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Spin dephasing in the extended strong collision approximation
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For Markovian dynamics of field fluctuations we present here an extended strong collision approximation,
thereby putting our previous strong collision approach@Phys. Rev. Lett.83, 4215 ~1999!#! into a systematic
framework. Our approach provides expressions for the free induction and spin-echo magnetization decays that
may be solved analytically or at least numerically. It is tested for the generic cases of dephasing due to an
Anderson-Weiss process and due to restricted diffusion in a linear field gradient.
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I. INTRODUCTION

The understanding of spin dephasing is of paramount
terest in all fields of nuclear magnetic resonance~NMR! sci-
ences. In NMR spectroscopy it determines the line shape
NMR imaging it is—besides longitudinal relaxation—th
major mechanism determining the contrast and contains m
phological as well as functional information.

The processes contributing to spin dephasing are rel
to the spin environment. In biological tissues, for examp
spin dephasing may result from dipole-dipole interaction
water proton spins with paramagnetic ions such as Fe21.
Another cause is diffusion within inhomogeneous magne
fields generated by native or contrast agent induced sus
tibility differences that are related to tissue compositi
and/or cellular and subcellular compartments. In magn
resonance imaging, spin dephasing in external gradient fi
is exploited to get information about diffusion within bio
logical systems. These diffusion sensitive imaging te
niques are applied to study tissue anisotropy and restrict
of diffusion that are given by membranes of cells and s
cellular structures.

Essential for dephasing of spins are the field fluctuati
that induce the phase modulations. It is important to note
in biological tissues the relevant processes cover almos
whole range of time scales. For example, the dynamics
interactions of water proton spins with paramagnetic mac
molecules such as ferritin is so fast that it can be conside
to be within the motional narrowing regime. On the oth
hand, dephasing of spins in magnetic field gradients aro
larger vessels is almost coherent, i.e., it is in the st
dephasing regime@2#. Hence, for biological applications it i
important to obtain results from theory that are valid over
whole motion regime. However, in most cases this is
possible analytically.

Therefore, most efforts have focused on limiting cas
Themotional narrowing limitis well investigated and a num
ber of analytical results were obtained for it@1#. The charac-
teristic of this limit is that the mean phase shift induced b
field realization is much smaller than 1, i.e.,udwu
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5t^Dv2&1/2!1, where the correlation timet gives the mean
duration of some field realization, and^Dv2& is the variance
of the inhomogeneous field. The relaxation time is then
tained as 1/T25t^Dv2&. In the other limiting case, i.e., the
static dephasing regime(t^Dv2&1/2@1), Yablonski and
Haake @2# derived analytical expressions for cohere
dephasing of spins in inhomogeneous fields around magn
centers such as cylinders or spheres. Kiselev and Poss@3#
extended Yablonski and Haake’s static dephasing appro
by considering diffusion of spins within local linear grad
ents. However, this approach requires that the diffus
length l during dephasing is within the linear approximatio
of the inhomogeneous fieldsv(x01 l )'v(x0)1]xv(x0) l .
Note that expansion around the limiting cases by pertur
tion approaches leads to divergences in the other respe
limits. Therefore, the intermediate motion regime, i.e.,
most everything between the static dephasing and motio
narrowing limit, was in most situations accessible by sim
lations only@5#.

Recently, we used a strong collision~SC! approach to
characterize spin dephasing in a particular situation: An
homogeneous field around regularly arranged parallel cy
ders filled with a paramagnetic substance@4#, a model re-
flecting the capillary network of the cardiac muscle. T
results agreed well with simulations@5# over the whole dy-
namic range and with experimental data@6,7#.

The basic idea behind the SC approach is to replace
original generator of the Markov process by a simpler o
the SC generator, which conserves particular features of
original process. In particular, by an appropriate choice of
parameter the SC process reproduces the correlation tim
the field fluctuations induced by the original Markov proce
There are several advantages of the SC approximation. F
it is correct both in the motional narrowing and the sta
dephasing limits; thereby also the error in the intermedi
regime is reduced considerably, when compared to pertu
tion approaches. And second, it provides a simple expres
for the magnetization decay, which may be solved anal
cally or at least numerically.

However, the drawback of the SC approach was—up
now—that it is not part of a systematic approximation to
an expansion of the original generator. Therefore, it was
clear how results could be improved beyond the SC appr
©2002 The American Physical Society23-1
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WOLFGANG R. BAUER AND WALTER NADLER PHYSICAL REVIEW E65 066123
mation. The aim of this paper is to extend the SC appro
and provide a framework for a systematic approximation

In the following section we will present a formal descri
tion of spin dephasing that will be the basis for our analyti
analysis. In Sec. III we will introduce the extended stro
collision ~ESC! approximation proper and show how it
used to describe free induction and spin-echo decay. In
IV we will apply it to two generic cases: spin dephasi
induced by an Anderson-Weiss process@8# and by restricted
diffusion in a linear field gradient. We will close the pap
with a summary and a discussion of our results.

II. FORMAL DESCRIPTION OF SPIN DEPHASING

We assume that dephasing of transversely polari
nuclear spins exposed to an external field is induced by
domly fluctuating magnetic perturbation fields with fr
quencyv i , wherei is a discrete or continuous variable. Th
transition dynamics between two distinct statesi andj is that
of a stationary continuous time Markov process described
ratesr j i for the transitioni→ j . The matrixR5(r j i ) as the
generator of the Markov process conserves the probabilit
find a spin within one state, i.e.,r ii 52( j Þ i r j i . The eigen-
values l of R fulfill the condition l<0 where l 50 corre-
sponds to the equilibrium probability distribution. To sim
plify the notation we denote the normalized left and rig
eigenvectors ofR as ^ l u and u l &, respectively, with^ l 8u l &
5d l 8 l .

The time evolution betweent and t1dt of the transverse
magnetization of spins in the statej ~in polar notationmj
5mjx2 imjy) results from the linear superposition of th
transition and the precession dynamics, i.e.,] tmj (t)
5( i r j i mi(t)1 iv jmj (t). The precession within the extern
field was omitted since it only induces a constant offset
the frequency which may be gauged to zero. With the di
onal frequency, matrixV5(d j i v i) one obtains for the mag
netizationum&5(mj ),

] tum~ t !&5~R1 i V!um~ t !&, ~1!

which is a generalization of the Bloch-Torrey equation@9#
originally formulated for diffusing spins, i.e.,R;¹2. In
most cases it is reasonable to assume that the initial ma
tization um(0)& is proportional to the equilibrium probability
distribution u0&, e.g., when free diffusion is considered th
would imply a homogeneous transverse magnetizat
Equation~1! then provides the time evolution of the tran
verse magnetization~free induction decay! as

um~ t !&5exp@~R1 i V!t#u0&, ~2!

where the initial magnetization was normalized to 1. T
overall magnetization is then determined as

M ~ t !5^0um~ t !&5^0uexp@~R1 iV!t#u0&. ~3!

The free induction decay as determined by Eqs.~2! and ~3!
results from coherent and incoherent spin dephasing.
incoherent contribution is determined from spin-echo exp
ments. In-plane polarized spins are rotated
06612
h

l

c.

d
n-

y

to

t

f
-

e-

n.

e

he
i-
y

180 ° (p-pulse! after a timet/2. This pulse transforms the
original magnetizationum(t/2)& to its complex adjoint
um* (t/2)&5exp@(R2 i V)t/2#u0&. This procedure cancels th
coherent spin dephasing after the timet ~echo time!, i.e. the
decay of magnetization att is solely due to incoherent spi
dephasing. The time course of the magnetization after
pulse, i.e., for timest8.t/2, is determined by

um~ t8!&5exp@~R1 i V!~ t82t/2!#exp@~R2 i V!t/2#u0&,
~4!

i.e., the overall spin-echo magnetization at the echo timet is

MSE~ t !5^0uexp@~R1 i V!t/2#exp@~R2 i V!t/2#u0&

5^m~ t/2!um* ~ t/2!&. ~5!

Equation~5! relates the overall spin-echo magnetization
the magnetization of the free induction decay.

III. THE STRONG COLLISION APPROXIMATION AND
ITS EXTENSION

The analytical determination of the free induction dec
according to Eqs.~3! is restricted to very few cases, e.g., fre
diffusion in a linear gradient or stochastic fluctuations b
tween two precession frequencies. The idea of the str
collision approach and its extension is to replace the gen
tor of the Markov processR by a more simple generatorD
that conserves specific features of the original dynamics

A. Strong collision approximation

In many cases the stochastic fluctuations of the pertu
tion fields occur on a much shorter time scale than s
dephasing, i.e., the correlation timet of field fluctuations is
much shorter than the relaxation time of the magnetizati
For ergodic Markov processes one can estimate that a
some value oft a spin has visited almost all relevant stat
with the equilibrium probability. On the other hand, there
only little change of the magnetization during this time i
terval. Therefore, spin dephasing in this situation can be
scribed equivalently by a process in which the transition r
between two statesi→ j is independent of the initial state
Consequently, the transition rate fori→ j is proportional to
the equilibrium probability of the final state,p0,j . Such a
dynamics is referred to asstrong collision dynamics.

The generatorD of this process has the form

D52l~ id2P0!, ~6!

whereP05u0&^0u is the projection operator onto the eige
space generated by the the equilibrium eigenvector ofR, and
id is the identity operator. The factorl has to be determined
self-consistently.

Since the starting point of the strong collision approxim
tion is the observation that—in many cases of interest—
correlation of the stochastic field fluctuations appear on
shorter time scale than that of changes of the magnetiza
only the long-time behavior of the field fluctuations is
importance. This long-time behavior is characterized by
3-2
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correlation time of the two-point autocorrelation function
the field fluctuations~see also Appendix A!,

C2~ t !5^v~ t !v~0!&5^0uV exp~Rt !Vu0&, ~7!

which is defined as

t25E
0

`

dt
C2~ t !2C2~`!

C2~0!2C2~`!
5

^0uV@exp~Rt !2P0#Vu0&

^0uV2u0&2^0uVu0&2
.

~8!

Stochastic field fluctuations determined by the SC proc
should have the same correlation time as the original p
cess, leading to the self-consistency condition

t2
(SC)~l!5t2 . ~9!

It is easy to determine that the correlation time for the stro
collision approximation ist2

(SC)(l)5l21, see Eq. ~C2!,
leading to

l5t2
21 . ~10!

B. Extended strong collision approximation

The extension of the strong collision approximation
based on a comparison with the spectral expansion of
original operator,

R5(
j 50

`

l jPj , ~11!

wherel 050. l 1.••• are the ordered eigenvalues ofR and
Pj5u j &^ j u is the projection operator onto the eigenspace c
responding to l j . Since the time evolution operator

exp(Rt)5( j 50
` el j tPj , it is clear that the low order eigenva

ues determine the long-time behavior, while higher ord
dominate shorter and shorter time scales. A comparison
a rewriting of Eq.~6!,

D5 l 0P02l~ id2P0! ~12!

~note thatl 050!, shows that in the strong collision approx
mation, just the lowest order term of Eq.~11! is taken into
account explicitly, while the contribution of the higher eige
values is approximated by the self-consistently determi
parameterl.

A natural extension, therefore, would be to take into
count more low order eigenvalues explicitly, thereby incre
ing the accuracy of the description of the long-time behav

Dn85(
j 51

n

l jPj2l~ id2P!. ~13!

with P5( j 50
n Pj . A stochastic process generated by an o

eratorDn8 in Eq. ~13! will be referred to as a simplified ex
tended strong collision (ESCn8) approximation of ordern. As
before, the contribution of the higher eigenvalues is appro
mated by the parameterl, which is determined again self
consistently from condition~9!. Here it leads to
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j 51
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l j
21uv0i u2

, ~14!

with v0i5^0uVu i & and c2(0)5^0uV2u0&2v00
2 . Note that

for n→0 this equation becomes Eq.~10! again.
However, there are several problems involved with an

proximation based on Eqs.~13! and ~14!. Practically, an ex-
act determination of the low order eigenvalues and eigenv
tors is possible only in special cases. Therefore, one ha
deal with the problem that the eigenvalues and eigenvec
are known either only approximately or not at all. Furthe
more, even with eigenvalues and eigenfunctions known
turns out that the ESC8 approximation may be not applicabl
at all in certain situations: If the autocorrelation function
the field fluctuations is determined fully by the eigenfun
tions included inD8, Eq. ~14! is undetermined. In that cas
additional self-consistency requirements would be neces
for a better description of the intermediate time regime.

Nevertheless, the above approach can be readily ada
to these situations. Equation~13! can be viewed as an opti
mized reduced description of the relaxation in various s
spaces of the original operatorR. Such a optimized descrip
tion should also be possible for subspaces that are
eigenvectors ofR. We can, therefore, set

Dn52(
j 51

n

l jPj2l~ id2P!. ~15!

However, now the ratesl j , j 51, . . . ,n are not eigenvalues
anymore, but have to be determined by additional s
consistency requirements, see below. Moreover, thePj are
not projectors onto the eigenspace of a particular eigenva
but onto the spaces defined by arbitrarily chosen mutu
orthogonal functionsu f j&, j 51, . . . ,n, with ^ f i u f j&5d i j and
^ f j u0&50; i.e., the projectors have the formPj5u f j&^ f j u and
P5P01( j 51

n Pj . Naturally, one would try to choose th
functions u f j& close to the eigenfunctionsu j &, although it is
not required for the extension to work. Another natural fun
tion space, for example, is based on polynomials in the
quency operatorV, i.e.,

u f i&5pi~V!u0&, ~16!

wherepi is some polynomial of degreei, the coefficients of
which are chosen in such a way that the orthonormal re
tions are fulfilled. In the following we will refer to this bas
of functions as theV base.

In analogy to Eq.~13! a stochastic process generated
an operatorDn in Eq. ~15! will be referred to as an extende
strong collision (ESCn) approximation of ordern. It is evi-
dent that the ESC0 approximation refers to the strong coll
sion approximation.

We mentioned already that the ratesl j , j 51, . . . ,n in
Eq. ~15! have to be determined now by additional se
consistency requirements. As it was with the SC approxim
tion, the aim of the ESCn approximation is to approximate
3-3
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WOLFGANG R. BAUER AND WALTER NADLER PHYSICAL REVIEW E65 066123
more closely the correlation of field fluctuations. This
achieved by considering also higher order correlation fu
tions

Cm~ tm21 , . . . ,t1!5K vS (
j 51

m21

t j D . . . v~ t21t1!v~ t1!v~0!L
5^0uV exp~Rtm21!V•••exp~Rt1!Vu0&.

~17!

Following the same arguments as for the strong collis
approximation, the long-time behavior of theCm is of inter-
est. In the same way as for the strong collision approxim
tion this should be characterized by some first order stat
cal moment, which is obtained by integration of th
correlation function overtm21 , . . . ,t1. However, direct us-
age ofCm is hampered by its nonvanishing asymptotic b
havior: It is easily seen that from the relatio
limtn→` exp(Rtn)5P0 follows

lim
tn→`

Cm~ tm21 , . . . ,t1!5Cm2n~ tm21 , . . . ,tn11!

3Cn~ tn21 , . . . ,t1!, ~18!

which does not necessarily vanish. In the strong collis
approximation we avoided this problem by considering
operator@exp(Rt)2P0# instead of exp(Rt) in Eq. ~8!, i.e.,
we considered only the relaxational part of the stocha
process. When we perform the same replacement in Eq.~17!
we obtain modified correlation functionscm(tm21 , . . . ,t1)
that we will call quasicumulants~see Appendix A!. They
vanish asymptotically for alltn . We now require that the
generalized correlation times derived from these quasicu
lants,

tm
m215E

0

`

P i 51
m21dti

cm~ tm21 , . . . ,t1!

cm~0, . . . ,0!
, ~19!

are equal for the exact process and for the extended st
collision description. The relaxation rates are, therefore,
termined by

tm
(ESCn)

~l,l1 , . . . ,ln!5tm , m52,4, . . . ,2n12,
~20!

which replace the single self-consistency condition~9!. Note
that in many systems the correlation functio
cm(tm21 , . . . ,t1) vanish for odd values ofm due to symme-
try. Therefore, we require the equivalence of relaxation tim
in Eq. ~20! for even values ofm only. Otherwise one has to
determine the correlation times of the firstn11 nonvanish-
ing correlation functions.

It is important to emphasize some properties of the E
approximation. First of all, it usually does not reduce to t
ESC8 approximation when eigenfunctions are used for
projection operator; i.e., thel1 , . . . ,ln do not take on the
numerical values of the corresponding eigenvalues, altho
they usually do approximate them. In the light of the pro
lems with the ESC8 approximations mentioned above, it wi
06612
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turn out that this is an advantage: the self-consistent de
mination of the relaxation parametersl andl1 , . . . ,ln ac-
cording to Eq.~20! is more balanced than when only Eq.~9!
is used, and gives rise to an improved approximation. Mo
over, the self-consistency conditions~20! imply that both
processes, the ESC process and the original Markov proc
have the same motional narrowing expansion of the tra
verse relaxation, as it is shown in Eq.~B7!.

C. Transverse spin relaxation in the extended strong collision
approximation

In this section we will exploit the simple structure of th
generatorDn to determine the time course of magnetizatio
We will consider both: the free induction decay, i.e., the s
perposition of coherent and incoherent spin dephasing,
the spin-echo decay, i.e., pure incoherent spin dephasing

1. Free induction decay

In the extended strong collision approximation the ge
eratorR of the free induction decay in the generalized Bloc
Torrey equation~1! is replaced by the generatorDn of Eq.
~15!. Instead of solving the propagatorU(t)5exp@(Dn
1 i V)t# it is more convenient to solve its Laplace transfor
Û(s)5(s2Dn2 i V)21, which may be expanded as

Û~s!5Û0~s1l!1Û0~s1l!LÛ~s!. ~21!

where Û0(s)5(s2 i V)21 is the Laplace transform in the
static dephasing limit (Dn50), and the operatorL is defined
as

L5(
j 50

n

~l2l j !Pj , ~22!

where we setl050. We will now confine the operators in
Eq. ~21! onto the subspace defined by the projection opera
P5( j 50

n Pj . Using the abbreviationOP
ªPOP for denot-

ing any operatorO confined to that subspace, we obtain

ÛP~s!5Û0
P~s1l!1Û0

P~s1l!LPÛP~s!, ~23!

where we exploited the fact thatL5PLP and the idempo-
tency of projection operators, i.e.,P5P2. Equation~23! is
of fundamental importance. It demonstrates that the rela
~21! between the ESC approximation and the static deph
ing is also valid in the subspace@ u0&,u f 1&, . . . ,u f n&]. This
simplifies determination of spin relaxation considerab
since one only has to determine the (n11)3(n11)
matrices1 of the static dephasing limitÛ0

P andL, i.e.,

ÛP~s!5@P2Û0
P~s1l!LP#21Û0

P~s1l!. ~24!

1In case of degeneracy of the eigenvalues the matrix dimensio
the sum of the dimensions of the eigenspaces plus 1.
3-4
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The Laplace transform of the overall magnetization de
M̂ [n] (s) in the extended strong collision approximation h
the form

M̂ [n]~s!5^0uÛP~s!u0&. ~25!

For the special case of the strong collision approximati
ESC0, Eqs.~24! and ~25! result in

M̂ [0]~s!5
M̂ sd~s1l!

12M̂ sd~s1l!l
, ~26!

with M̂ sd(s)5^0uÛ0(s1l)u0& as the Laplace transform o
the overall magnetization in the static dephasing regime.
time evolutionM (t) can be obtained from Eqs.~24! and~25!
either by the numerical inverse Laplace transform by or
ing the generalized moment approach@4,10#, which allows a
multiexponential approximation.

2. Spin-echo decay

The spin-echo decay is obtained by inserting the gener
Dn into Eq. ~5!, i.e.,

] tMSE,[n]~ t !52lMSE,[n]~ t !1^m~ t/2!uLum* ~ t/2!&

52lMSE,[n]~ t !1^0uU~ t/2!LU* ~ t/2!u0&

52lMSE,[n]~ t !1^0uUP~ t/2!LU* P~ t/2!u0&,

~27!

i.e., the spin-echo decay is expressed as a function of
spin-echo amplitudeMSE, and the projection of the free in
duction decay onto the subspace@ u0&,u f 1&, . . . ,u f n&], i.e.,
UP(t)u0&. This projection of the free induction decay is o
tained from Eq.~24! by inverse Laplace transform, i.e
UP(t)u0&5L 21(ÛP(s)u0&). The solution of Eq.~27! is

MSE,[n]~ t !5e2ltF112E
0

t/2

dje2lj^0uUP~j!LU* P~j!u0&G
~28!

3. Time constants of transverse relaxation

The free induction and the spin-echo decay are usu
described by the time constantsT2* andT2. However, there is
no unique definition of these parameters. One definition
the relaxation times is

1/T2* 52 ln@M ~ t !#/t,

1/T252 ln~MSE!/t. ~29!

For the ESC decay one has to replaceM by M [n] andMSE by
MSE,[n] . This definition implies a dependence of relaxati
times ont, except for single exponential decay.

Another definition of relaxation times is based on the
sumption that these constants provide the best single e
nential approximation of magnetization decays, i.e.,M (t)

'e2t/T2* ,MSE'e2t/T2. According to the mean relaxatio
06612
y

,

e

-

or

he

ly

f

-
o-

time approximation the relaxation times are then the fi
long-time moments of the decays@10#, i.e.,

T2*ªm21~M !5E
0

`

dt M~ t !,

T2ªm21~MSE!5E
0

`

dt MSE~ t !. ~30!

For a single exponential the mean relaxation time definit
and the definitions~29! give the same results. According t
definition ~30! the relaxation times of the ESC decays can
related to their Laplace transforms as

T2* 5M̂ [n]~0!,

T25M̂SE,[n]~0!. ~31!

The termM̂ [n] (0), which providesT2* , is obtained from Eq.
~25!. Applying some rules of Laplace transforms, the te
M̂SE,[n] (0) giving T2 is obtained from Eq.~27! as

T25l2112(
i 50

n

~12l i /l!Q i , ~32!

where

Q05E
0

`

dtu^0uUP~ t !u0&u2

5
1

2p i E2 i`

i`

dẑ 0uÛP~z!u0&^0uÛ* P~2z!u0& ~33!

is the mean relaxation time of the absolute squared ove
free induction magnetizationuM [n] (t)u25u^0uU(t)Pu0&u2,
and for i>1,

Q i5E
0

`

dt^0uUP~ t !u f i&^ f i uU* Pu0&~ t !&

5
1

2p i E2 i`

i`

dẑ 0uÛP~z!u f i&^ f i uÛ* P~2z!u0& ~34!

are transit times describing the transient occurrence of
nonequilibrium components of the free induction dec
U(t)u f i&. Equation~32! relatesT2, which describes the inco
herent, i.e., irreversible, component of spin dephasing to
stochastic field dynamics (l,l i) and time constants of the
free induction decay (Q i), i.e., Eq. ~32! is a dissipation-
fluctuation-coherence relation. Note that the Eqs.~33! and
~34! directly relate the time constantsQ i to the Laplace
transform of the free induction decayÛP(s) given by the
fundamental equation~23!.

From Eq. ~32! one can derive asymptotic relations fo
very fast and slow stochastic field fluctuations. Lete be some
scaling parameter ofDn , i.e.,l,l i;e, then Eq.~32! reads in
the static dephasing limit (e→0)
3-5
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T2'l21, ~35!

where we exploited thatQ i(e) approaches its finite stati
dephasing limit. For very fast fluctuations i.e., in the m
tional narrowing limit (e→`) one exploits that

^ f i uÛ(s)u0&/^0uÛ(s)u0&;e21, as a power expansion demo
strates, i.e., one obtains

T2'2Q0 . ~36!

This implies that the spin-echo relaxation time is alm
identical with the relaxation time of the absolute squa
magnetization of the free induction decay, or vice versa t
the free induction decay is almost irreversible.

The dissipation-fluctuation-coherence relation~32! takes a
very simple form in the strong collision approximation, wh
we assume that the overall magnetization decay is well
proximated by a single exponential, i.e.,M [0] (t)'e2t/T2* .
Sincel5t2

21, see Eq.~10!, Eq. ~32! reads

T25t212Q0't21T2* . ~37!

From Eqs.~37! follows that in the motional narrowing
limit T2'T2* holds whereas in the static dephasing limit
the strong collision approximation the relationT2't2 holds.

IV. APPLICATIONS

A. Anderson-Weiss model

The Anderson-Weiss model@8# is one of the rare
approaches—besides the ESC approximation—which
scribes spin dephasing over the whole dynamic range of
chastic field fluctuations. The approach is suitable, for
ample, when dephasing is induced by spin interaction wit
great number of independently fluctuating perturbation fie
in the spin environment. Then analytical results are obtai
for the free induction and the spin-echo magnetization de
as

M ~ t !5expF2E
0

t

~ t2j!c2~j!djG , ~38!

MSE~ t !5expF24E
0

t/2

~ t/22j!c2~j!dj

1E
0

t

~ t2j!c2~j!djG , ~39!

wherec2 is the modified two-point correlation function~see
Appendix A!. In this section we will first characterize th
class of Markovian processes which fulfills the conditions
the Anderson-Weiss model. This leads to a generali
Bloch-Torrey equation according to Eq.~1!, which is solved.
Finally we compare the Anderson-Weiss model with
ESC0 and ESC1 approximation.

1. Markovian and Anderson-Weiss dynamics

The Anderson-Weiss approach is based on a Gaussian
tribution of perturbation field frequenciesv. Even more im-
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portant is theadditionalassumption that the stochastic pha
accumulation of a spinf5*0

t djv(j) also exhibits a Gauss
ian distribution. This latter condition implies that the Green
functionG(v j ,v i ,t), i.e., the probability that a spin initially
precessing with frequencyv i precesses att with v j , is also
a Gaussian function in v j ,v i with the condition
G(v j ,v i ,0)5d(v j2v i). This implies that only neares
neighbor transitions rates are nonvanishing. Markovian p
cesses in a continuous variablev with this property are de-
scribed equivalently by a Fokker-Planck equation@11#, i.e.,
the probability densityp(v) satisfies

] tp~v,t !5Rp~v,t !5]vD~v!@]v2F~v!#p~v,t !,
~40!

whereD(v) is a—possiblyv dependent—diffusion coeffi-
cient andF(v) is some driving force. Since the equilibrium
probability density is a Gaussian function one obta
F(v)52cv with c.0. The generalized Bloch-Torre
equation~1!, which determines the dynamics of magnetiz
tion as a superposition of precession and stochastic tra
tions, then reads

] tm~v,t !5@]vD~v!~]v1cv!1 iv#m~v,t !. ~41!

The derivation of the Eqs.~40! and ~41! is of fundamental
importance, since it states that a Markovian dynamics o
variablev, which satisfies the Anderson-Weiss conditions
equivalent to a diffusion process in this variable within
harmonic potentialcv2/2 and vice versa. Transformation o
variablesv→c1/2v and t→c21/2t simplifies Eq.~41! to

] tm~v,t !5@]vb~v!~]v1v!1 iv#m~v,t !, ~42!

where we continue to denote also the transformed varia
asv and t andb5c3/2D is the transformed diffusion coeffi
cient. In the following we will restrict consideration to th
case of a constant diffusion coefficientb. The left and right
sided eigenfunctions of the transition operatorR5b]v(]v

1v) are the Hermite functions, i.e.,

un&;exp~2v2/2!Hn~v!,

^nu;Hn~v! ~43!

with eigenvalues

l n52nb. ~44!

From the definition of the Hermite functions and the o
erator intertwining relation@]v ,(]v1v)#51 follow the re-
cursive equations

un11&52
1

n11
]vun&, un21&5~]v1v!un&,

^n11u5^nu~]v1v!, ^n21u52
1

n
^nu]v , ~45!

which also provide the normalization of eigenfunctions. T
advantage of the Markovian formulation of the Anderso
3-6
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Weiss model is that it does not only provide global para
eters but also local ones, e.g., the time course of the ma
tization with frequencyv. Straightforward application o
Eqs.~45! and some operator algebra provides the solution
Eq. ~42! as

m~v,t !5exp@b]v~]v1v!1 iv#u0&

5exp@2b21t1b22~12e2bt!#~2p!21/2

3exp@21/2$v2 ib21~ebt21!%#. ~46!

Integration overv just gives the free induction decay of th
overall magnetization

M ~ t !5exp@2b21t1b22~12e2bt!#, ~47!

which is just equivalent to the result of Eq.~38!, since the
two-point correlation function of Eq.~42! is c2(t)5e2bt

@see Eq.~E1!#. Insertion of this two-point correlation func
tion into Eq.~39! provides the spin-echo decay as

MSE~ t !5M ~ t/2!2 exp@b22~e2bt/221!2#. ~48!

Relaxation times of the free induction and spin-echo de
were determined according to Eqs.~30!.

2. ESC approximation

The ESC propagator is determined from the propagato
the static dephasing limitU05exp(iVt)5@exp(ivt)#, and
theL matrix of Eq.~22!, both restricted either to the functio
space@ u0&] for the ESC0 or @ u0&,u f 1&] for the ESC1 approxi-
mation Eq.~24!. The special structure of the transition ra
operator of the Anderson-Weiss model implies that the b
of eigenfunctions, Eqs.~43!, is identical with theV base, Eq.
~16!, i.e., pn(V)u0&5un&. Hence, we will set in the follow-
ing u f 1&5p1(V)5u1&.

ESC0 approximation.The matrix element of the Laplac
transformed propagator in the static dephasing limit requ
for the ESC0 approximation is

^0uÛ0~s!u0&5Ap/2es2/2 erfc~s/A2!, ~49!

where erfc(z)512erf(z) is the complementary error func
tion. The coefficientl, which guarantees the self-consisten
condition Eq.~9!, is determined form the Eqs.~C2! and~E2!
as

l5b. ~50!

ESC1 approximation.The matrix elements of the Laplac
transformed propagator in the static dephasing limit requ
for the ESC1 approximation in theV base are that of Eq
~49! and

^0uÛ0~s!u1&5NL@^0uexp~ iVt !Vu0&#

5N~2 i!L@] t^0uexp~ iVt !u0&#

5Ni@12s^0uÛ0~s!u0&#, ~51!
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where the factorN generally is some normalization facto
with N25^0uV2u0&, i.e., in the case of the Anderson-Wei
model it is simplyN51. Consequently, using some eleme
tary rules of Laplace transforms, one derives the other ma
elements as

^1uÛ0~s!u0&5^0uÛ0~s!u1&,

^1uÛ0~s!u1&5N2s@12s^0uÛ0~s!u0&#, ~52!

It has to be stressed that the Eqs.~51! and~52! are generally
valid for all ESC1 approximations in theV base.

The coefficientsl,l1 guaranteeing the self-consistenc
condition Eq. ~20! are obtained from Eqs.~D4!,~E2! and
~D7!,~E4!

l15b,

l52b. ~53!

Relaxation in the ESC0 and ESC1 approximation.The
matrix Û0

P(s) and the coefficientsl and l1 determine the

Laplace transformed ESC propagatorÛP(s) in Eq. ~24!,
which itself is the base for all other calculations. It direct
providesT2* when defined as the first moment, Eq.~31!, of

the free induction decay Eq.~25!. Insertion of ÛP(s) into
Eqs.~33! and ~34! provides according to Eq.~32! the relax-
ation time of the spin-echo decay when defined as its fi
long-time moment Eq.~31!. Inverse Laplace transformatio
of ÛP(s) gives the ESC propagatorUP(t), which itself al-
lows determination of the spin-echo decay Eq.~28!.

The relaxation timeT2*ªm21(M ) of the Anderson-Weiss
process is well approximated by the ESC0 and ESC1 ap-
proximation over the whole dynamic range of stochastic fi
fluctuations~Fig. 1!. In the static dephasing regime all curve
approach limb→0m21

215A2/p. The successive approximatio
of the spin-echo relaxation by the ESC approximation is s
from the magnetization decay curves~Fig. 2! and the curves
showing the dependence ofT2 obtained by either definition
@Eqs.~29! and ~30!# on the diffusion coefficientb as Fig. 3
demonstrates. The latter curves all run parallel in the m
tional narrowing regime@t2(^0uV2u0&)1/25b21!1# and
exhibit a similar location of the maximum relaxation rat
Towards the static dephasing regime (b→0) the rate of the
Anderson-Weiss process declines less than the rates o
ESC processes.

B. Spin dephasing by restricted diffusion
in a linear gradient field

1. The exact process

Whereas dephasing of free diffusing spins in a linear g
dient field can be treated analytically, only numerical so
tions exists for the restricted diffusion case@12#. On the one
hand restricted diffusion in a linear gradient field provides
simple model to study principle features of spin dephas
by diffusion. On the other hand treatment of this problem
not only of academic interest as already mentioned in
3-7
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Introduction. We will approximate the free induction an
spin-echo decay of the global magnetization for the case
restricted diffusion by the strong collision approximatio
(ESC0) and its first extension (ESC1). The ESC1 approxi-
mation will be performed for both, in theV-polynomial
base, i.e.,u f 1&;Vu0&, and in the eigenfunction base, i.e
u f 1&5u1&.

We assume that the spins diffuse within an interval of s
L in a linear gradient fieldv(x)5gx. Reflecting boundary
conditions atx56L/2 imply that]xm(6L/2,t)[0. With D
as the diffusion coefficient andR5D@]x

2# the Bloch-Torrey
equation~1! has the form] tm(x,t)5(D@]x

2#1 igx)m(x,t),
where the brackets@ # denote that the application of the op
erator]x

2 is restricted to functions which fulfill the reflectin
boundary conditions. Transformation of variablesx→x/L
and t→tgL results in

] tm~x,t !5~b@]x
2#1 ix !m~x,t !, ~54!

and vanishing derivatives at the edges of the unit interva

]xm~61/2,t ![0, ~55!

with the diffusion coefficientb5D/(gL3). We continue to
denote also the transformed variables asx andt to reduce the
number of symbols. When the initial magnetization is p
portional to the equilibrium probability, i.e.,m(x,0)[1, the
Laplace transformm̂(x,s) of the local magnetization deca
satisfies

~b@]x
2#1 ix !m̂~x,s!521. ~56!

Equation~54! was solved numerically. Integration of the r
sult over the unit interval provided the free induction dec
of the overall magnetization, and application of Eq.~5! on

FIG. 1. Relaxation timeT2* ~defined as the first long-time mo
ment m21) of the free induction decay in the Anderson-Wei
model~AW! and its ESC0 and ESC1 approximation as a function o
the diffusion coefficientb.
06612
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the result gave the spin-echo decay. When the spin-echo
laxation time was defined as the first statistical moment
the magnetization decay Eq.~30! was applied. For determi
nation ofT2* , defined as the first moment of the free indu
tion decay, Eq.~56! was solved numerically, and integratio
*21/2

1/2 dxm̂(x,s)5M̂ (s) gaveT2* 5M̂ (0)5m21(M ).

2. ESC approximation

The determination of the ESC0 and ESC1 approximation
is completely analogous to that for the Anderson-We
model, except that theV polynomial and the eigenfunction
base are not identical.

ESC0 approximation. The equilibrium function for the re
stricted diffusion within the unit interval is

u0&51, ~57!

i.e., one obtains

^0uÛ0~s!u0&5 i lnS s2 i /2

s1 i /2D . ~58!

The self-consistency condition for the strong collision a
proximation~9! determines the parameterl as@see Eqs.~C2!
and ~E11!#

l510b. ~59!

FIG. 2. Spin-echo magnetization decay in the Anderson-We
model ~AW! and its ESC0 and ESC1 approximations for three dif-
ferent diffusion coefficientsb. Note: for the diffusion coefficient
close to the motional narrowing regime (b5100.5) the Anderson-
Weiss and the ESC curves almost run parallel. Therefore for
clearness of the figure, only the Anderson-Weiss curve is shown
the intermediate motion regimeb51 the original and the ESC1
curve still run parallel, whereas the ESC0 approximation already
shows a moderate deviation. Towards the static dephasing re
(b51020.5) the successive improved approximation of t
Anderson-Weiss curve by the ESC curves is evident.
3-8
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Insertion of the results of Eqs.~58! and ~59! into Eq. ~24!
determines the Laplace transformed propagator in the E0

approximation̂ 0uÛ(s)u0& from whichT2* , T2, and spinecho
decay curves are obtained.

ESC1 approximation in theV-polynomial base.The low-
est order function besides the equilibrium state in
V-polynomial base has the form

FIG. 3. Dependence of the spin-echo relaxation timeT2 on the
diffusion coefficientb for the Anderson-Weiss model~AW! and its
ESC0 and ESC1 approximation:~a! The relaxation time was define
according to Eq.~29! by the echo timet, and~b! as the first long-
time momentm21 of spin-echo magnetization decay according
Eq. ~30!. The Anderson-Weiss curves and the corresponding
proximations converge asb approaches the motional narrowing r
gimet2(^0uV2u0&)1/25b21!1. When defined by the echo time~a!
the T2 curves of the Anderson-Weiss model and its approximati
all run parallel for the short echo time (t51). With increasing echo
time (t53,6) the successive ESC approximation becomes evid
06612
C

e

u f 1&5^0uV2u0&21/2Vu0&52A3x. ~60!

The matrix element~58! and the Eqs.~51! and ~52! then
directly provide the static dephasing operatorÛ0(s)5(s
2 ix)21 in the @ u0&,u f 1&] base. The parametersl1 ,l of the
ESC1 approximation are determined from the se
consistency condition~20!, i.e., with Eqs.~D4!, ~E11! and
Eqs.~D7!,~E17!, one obtains

l1510b,

l5
443 520

8900
b,

'49.83b. ~61!

Development in the eigenfunction space.The normalized
nonequilibrium eigenfunctions of the restricted diffusion o
erator are

un&5A2 sin~npx! for n51,3, . . .

5A2 cos~npx! for n52,4, . . . . ~62!

Since @]x
2# is a symmetric operator, left and right side

eigenfunctions are identical. Withu f 1&5u1& and z5p(1/2
1 is) one obtains

^0uÛ0~s!u1&5A2@sinh~ps!Ci~j!

1 i cosh~ps!Si~j!#uj52z*
j5z ,

^1uÛ0~s!u1&522 arctan~2s!2@ i cosh~2ps!Ci~j!

1sinh~2ps!Si~j!#uj522z*
j52z , ~63!

where Ci and Si denote the integral cosine and integral s
function, respectively. The parametersl1, l in the eigen-
function base are determined similarly as in theV base~see
Appendixes D and E! and one obtains

l1'9.89b,

l'41.6b. ~64!

Relaxation in the ESC0 and ESC1 approximation.Figure
4 demonstrates the first long-time moment of the free ind
tion decay, that of the strong collision approximation, and
first extension for both bases as a function of the diffus
coefficientb. All curves show the same asymptotic behav
in the static dephasing (b→0) and in the motional narrow
ing limit @t2(^0ux2u0&)1/251/(20A3)b21!1#. Furthermore,
the better approximation by the ESC1 curves compared to the
ESC0 curve in the intermediate motion regime is evide
There is no significant difference between the ESC1 approxi-
mation in the eigenfunction and in theV-polynomial base.

The spin-echo magnetization decay is shown in Fig.
Especially in the long-time behavior near the static deph
ing regime, the ESC1 curves either in the eigenfunctio
space or in theV space demonstrate a better approximat

p-

s

t.
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WOLFGANG R. BAUER AND WALTER NADLER PHYSICAL REVIEW E65 066123
than the ESC0 curve. This is also reflected by the dependen
of spin-echo relaxation rate 1/T2 on the diffusion coefficient
~Figs. 6 and 7!. When defined by the echo time@Eq. ~29!# the
ESC0 and ESC1 curves run parallel with the curve obtaine
for restricted diffusion dynamics for short echo times. F
longer echo times and decreasing diffusion coefficients
ESC1 curve provides a better approximation. Again as for
free induction decay there is no significant difference
tween ESC1 approximations in the eigenfunction and that
the V base.

V. SUMMARY AND DISCUSSION

Analytical results on transverse spin relaxation due to s
chastic phase modulation exist mainly for limiting cas
such as the motional narrowing and the static regime. Pe
bation approaches are only valid close to their respec
limits, and they diverge as one tries to extend them towa
the opposite motion regime. Particularly the intermedi
motion regime cannot be described reliably by such a tr
ment.

We choose a different approach. Our aim was to appro
mate the dynamics, assumed to be Markovian, by a m
simple one that conserves specific features of the origi
The starting point was the strong collision approximation@4#
that assumes the transition probability between two st
being independent from the initial state, an approximat
that holds when spin dephasing occurs on a time scale
nificantly longer than the stochastic phase modulatio
Hence, all states perpendicular to the equilibrium state re
with the same exponential factor that is determined s
consistently by comparison with the field fluctuations.

FIG. 4. Relaxation time of the free induction decayT2* of spins
diffusing within a linear field gradient in the unit interval as a fun
tion of the diffusion coefficientb. T2* is defined as the first long
time momentm21 and obtained from the Bloch-Torrey~BT! equa-
tion ~54!. The ESC approximations are shown. The ES1

approximation was determined for the eigenfunction~ef! and theV
base.
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Note that the motional narrowing limit as well as th
static dephasing regime are described correctly by this
proximation. Consequently, the error in the intermediate m
tion regime is already less than it would be by perturbat
approaches of a comparable low order. Nevertheless, the
still room for improvement. Also, one would like to hav
higher order approximations that can be used to check
quality of low order descriptions.

FIG. 5. Spin-echo magnetization decay for restricted diffus
within a linear field gradient in the unit interval as obtained fro
the Bloch Torrey~BT! equation~54!. Three diffusion coefficientsb
are considered. The ESC approximations in the different diffus
regimes are demonstrated. The ESC1 approximation was obtained
for the eigenfunction~ef! and theV base.

FIG. 6. Spin-echo relaxation timeT2 as a function of the diffu-
sion coefficientb for restricted diffusion in the unit interval and th
corresponding ESC approximations. The labeling of the curves i
in Fig. 4. The relaxation time was defined by the echo timet ac-
cording to Eq.~29!.
3-10
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A systematic extension of the strong collision ansatz is
include the relaxation of states of an appropriate finite fu
tion base explicitly. We require that correlation times
original and approximate dynamics are identical to a cer
order. This self-consistency condition assures that both
namics have the same motional narrowing expansion of
dephasing. As it was already in the strong collision ans
spin dephasing is asymptotically identical for both dynam
in the limit of the static motion regime.

The finite function base of the ESCn approximation may
be given by the firstn ordered eigenfunctions of the gener
tor of the original phase modulations. Obviously, then
ESC generator directly reflects the dynamics of the origi
generator up to a time scale corresponding to thenth eigen-
value. For practical applications the ESC approach within
eigenfunction space may be a safe way to approximate
dephasing. However, when the determination of the eig
functions is tedious, the application of theV base@ u0&,u f 1&
;Vu0&,u f 2&;V2u0&, . . . ] may bemore appropriate, at leas
for the ESC1 approximation. Within theV base the determi
nation of the two- and four-point correlation times~see Ap-
pendix D! and the propagator in the static motion regim
Eq. ~52!, is considerably simplified.

The mechanism by which the ESC1 approach in theV
base works becomes evident by the following considerat
terms of the motional narrowing expansion Eq.~B1! may be
interpreted as repetitive interactions of the spin system w
the inhomogeneous fieldV and intermediate evolution with
the free propagator exp(Rt i). In the motional narrowing
limit, one obtains from Eq.~B7!,

1/T25 ĉ2~0!5E
0

`

dt^0uVexp~Rt !Vu0&

5^0uV2u0&E
0

`

dt^ f 1uexp~Rt !u f 1&, ~65!

FIG. 7. Spin-echo relaxation timeT2 as a function of the diffu-
sion coefficientb for restricted diffusion in the unit interval and th
ESC approximations. Labeling is as in Fig. 4. The relaxation tim
defined as the first long-time momentm21 of the spin-echo decay
Eq. ~30!.
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where the factor̂ 0uV2u0& is due to the normalization o
u f 1&, ^ f 1u f 1&51. Equation~65! implies that in the motional
narrowing limit, the long-time behavior of spin dephasin
solely depends on the free propagator related relaxatio
the stateu f 1&, i.e., this state remains the only relevant on
Hence, it is obvious that in the intermediate motion regim
an ESC1 approximation including the stateu f 1& in its genera-
tor is superior to the ESC0 approximation.

Within the function base the propagator of spin dephas
is directly related to the propagator of spin dephasing in
absence of stochastic phase modulations. This specific
ture of the ESC dynamics tremendously facilitates the ac
determination of spin dephasing for the following reaso
~i! in many cases the propagator in the static motion reg
~which is an average phase factor! may be determined ana
lytically or at least numerically;~ii ! the determination of the
propagator from that in the static motion regime is se
contained within the base, i.e., it is obtained from a com
nation of finite dimensional matrices.

The two lowest order ESC approximations were appl
to two generic models: spin dephasing in the Anders
Weiss model, i.e., Gaussian frequency distribution a
Gaussian transition dynamics, and dephasing by restri
diffusion in a linear frequency gradient. The reason for t
choice was that—besides their generic character—th
models allow either an analytical~Anderson-Weiss! or, at
least, a simple numerical treatment~linear gradient! of mag-
netization decay. These features are helpful to prove the E
approach. For the Anderson-Weiss model we determined
corresponding Markov generator of the phase modulatio
which—to our knowledge—was done here for the first tim

For both generic models the subsequent improvemen
ESCn approximations of dephasing parameters and magn
zation decays could be demonstrated. One of our next a
will be the application of the ESC approach to more realis
scenarios.

In closing, we would like to emphasize that the ESC a
proach is actually not limited to spin dephasing only. It c
be applied, in principle, in any situation where the time b
havior of complicated observables of stochastic processe
of interest. In each case, however, an appropriate func
base has to be chosen, corresponding to theV base for spin
dephasing.
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APPENDIX A: AUTOCORRELATION FUNCTIONS
AND QUASICUMULANTS

The generaln-point autocorrelation function of stochast
cally fluctuating fieldsv j is defined as

s
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Cn~ tn21 , . . . ,t1!

ª (
j n21 , . . . ,j 0

pS v j n21
,(

i 51

n21

t i ; . . . ;v j 1
,t1 ;v j 0

,0D )
n50

n21

v j n
,

~A1!

wherep(v j n21
,( i 51

n21t i ; . . . ;v j 1
,t1 ;v j 0

,0) is the probability

to find att50 the frequencyv j 0
, at t5t1 the valuev j 1

, . . . ,

and at t5( i 51
n21t i the frequencyv j n21

.When the stochastic
dynamics is determined by a Markov process, this proba
ity can be factored into transition probabilities between
quential statesi→ i 11 after the intervalt i 11 and the initial
(t50) probability distribution, i.e.,

pS v j n21
,(

i 51

n21

t i ; . . . ;v j 0
,0D

5 )
i 51

n21

p~v j i
←v j i 21

,t j i
!p~v j 0

,0!. ~A2!

The transition probabilities after the intervalt i are the matrix
elements of evolution operator exp(Rt i). Since the dynamics
is assumed to be stationary the initial probabilityp(v j 0

,0) is
the equilibrium state probability distribution, i.e., we can r
write Eq. ~A1!,

Cn5^0uV exp~Rtn21!V•••exp~Rt1!Vu0&, ~A3!

where V5(v jd j ,k) is the diagonal frequency matrix. A
modification of the correlation functions occurs if one e
changes the evolution operator exp(Rt) with the operator
exp(Rt)2P0, whereP05u0&^0u is the projection operato
onto the equilibrium state space. This modified evolution
erator describes the relaxation of observables minus t
equilibrium state values. The modified autocorrelation fu
tions will be denoted as quasicumulants and they are t
defined as

cn5^0uV@exp~Rtn21!2P0#V•••@exp~Rt1!2P0#Vu0&.
~A4!

The Laplace transform of the correlation function in E
~A4! has the form

ĉn~sn21 , . . . ,s1!5^0uVF 1

sn212R
2

1

sn21
P0G

3V•••F 1

s12R
2

1

s1
P0GVu0&.

~A5!

This Laplace transform allows the determination of tempo
moments of the normalized autocorrelation functi
cn(tn21 , . . . ,t1)/cn(0, . . . ,0) as thegeneralized correlation
times

tn
n215 ĉn~0, . . . ,0!/cn~0, . . . ,0!. ~A6!
06612
il-
-

-

-
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-
n
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APPENDIX B: MOTIONAL NARROWING EXPANSION

The motional narrowing expansion is a perturbation a
proach to determine the overall magnetizationM (t)—or its
Laplace transformM̂ (s)—in terms of powers of the fluctu
ating fieldsV. It is based on the assumption that the stoch
tic fluctuations are more rapid than the precession frequ
cies of the perturbation fields~motional narrowing limit!. We
will present a general relation between the relaxation of
magnetization and the correlation of the field fluctuatio
that contains the motional narrowing limit as a limit cas
The first step is to expand the Laplace transform of the ov
all magnetization, Eq.~3!, in V, i.e.,

~B1!

M̂ 21~s!5sS 11 (
r51

`

~21!rqrD
5s2 (

n51

`

i nĈn1s21 (
n1 ,n251

`

i n11n2Ĉn1
Ĉn2

1•••1~21!rs2(r21) (
n1 , . . . ,nr51

`

i n11nr

3 )
m51

r

Ĉnm
1•••. ~B2!

Rearrangement of terms of equal order inV provides

M̂ 21~s!5s2(
j 51

`

i jK j , ~B3!

where the coefficientsK j have the form

K j5Ĉj2s21 (
n11n25 j

Ĉn1
Ĉn2

1•••1~2s!12r

3 (
n11•••1nr5 j

)
m51

r

Ĉnm
1•••1~2s!12 j Ĉ1

j .

~B4!
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A comparison of this sum with the modified correlation fun
tions cj , Eqs.~A4! and ~A5!, shows that

~B5!

i.e., one obtains

~B6!

Equation~B6! expands the relaxation of the magnetiz
tion in terms of correlation functions to an arbitrary ord
The long-time behavior ofM (t) is determined by the
Laplace transform in the limit of smalls, i.e., in this range
the relation

M̂ 21~0!52(
j 51

`

i j ĉ j~0,0, . . . ,0! ~B7!

is valid; see also Eq.~A6!. The series in Eq.~B7! contains
terms of magnitude<^0uVnu0&/ l n, wherel denotes nonvan
ishing eigenvalues ofR. The latter determine the fluctuatio
frequency. In the motional narrowing limit these fluctuatio
are much higher than the precessing frequenc
^0uVnu0&/ l n!1, i.e., after normalization of the average pe
turbation field̂ 0uVu0& to zero, i.e.,c150, M (t) is given a
single exponential decay with the well known result for t
transverse relaxation rate as 1/T25 ĉ2(0)5t2^0uV2u0&.

APPENDIX C: QUASICUMULANTS IN THE STRONG
COLLISION APPROXIMATION

In the strong collision (ESC0) approximation the quasicu
mulants take a very simple form. Insertion of the genera
D52l( id2P0) into Eq. ~A5! results in

ĉn
(ESC0)

~sn21 , . . . ,s1!5 )
i 51

n21
1

si1l
cn21~0, . . . ,0!,

~C1!

i.e., the quasicumulant is a product of single exponen
functions e2lt i and the generalized correlation times, E
~A6!, are all identical, namely,

tn
(SC)5l21 . ~C2!

APPENDIX D: QUASICUMULANTS IN THE EXTENDED
STRONG COLLISION APPROXIMATION

We restrict ourselves here to the ESC1 approximation and
determine the correlation functions and generalized re
ation times for theV-polynomial base only in order to show
the principle. Extensions to higher order approximations a
to other function bases are straightforward, although t
may be more tedious to calculate.
06612
-
.

s

r

l
.

x-

d
y

For ESC1 the generator of the stochastic field fluctuatio
has the formD52l1P12l( id2P02P1). We will deter-
mine only the Laplace transforms of the two- and four-po
correlation functions, since the three-point correlation fun
tions vanishes in the models we consider. According to
~A5! the determination of the correlation functions requir
the operator

1

s2D
2

1

s
P05

1

s1l1
P11

1

s1l
~ id2P02P1!. ~D1!

Assuming that the average frequency vanishes, i.e.,^V&
5^0uVu0&50, which can always be achieved by normaliz
tion, u f 1&;Vu0&. Hence, the projectorP15u f 1&^ f 1u takes
the form

P15
Vu0&^0uV

^0uV2u0&
. ~D2!

For the Laplace transformed two-point correlation functi
one obtains then

ĉ2
(ESC1)

~s!5~l11s!21^0uV2u0&, ~D3!

i.e., the two-point correlation function exhibits a single e
ponential decay with relaxation rate

t2
(ESC1)

5l1
21 . ~D4!

The four-point correlation function is

ĉ4
(ESC1)

~s3 ,s2 ,s1!5
1

~s31l1!~s11l1!

3S 1

s21l1
2

1

s21l D ^0uV3u0&2

^0uV2u0&

1
1

~s31l1!~s21l!~s11l1!

3~^0uV4u0&2^0uV2u0&2!. ~D5!

The four-point correlation time is then determined as

t4
(ESC1)

5@ ĉ4
(ESC1)

~0!/c4
(ESC1)

~0!#1/3

5F 1

l1
2 S 1

l1
2

1

l D ^0uV3u0&2

^0uV2u0&~^0uV4u0&2^0uV2u0&2!

1
1

l1
2l

G 1/3

. ~D6!

In the case of the Anderson-Weiss model and for the
stricted diffusion linear gradient, one has^0uV3u0&50, i.e.,
Eq. ~D6! simplifies to

t4
(ESC1)

5A3 1

l1
2l

. ~D7!
3-13
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APPENDIX E: RELAXATION TIMES OF CORRELATION
FUNCTIONS IN THE MODELS

In this final appendix we will determine the generaliz
relaxation times of stochastic field fluctuations up to t
fourth order for the generic models we discuss in the m
text.

1. Diffusion in a harmonic potential

When field fluctuations result from diffusion in a ha
monic potential according to Eq.~40! and spin dephasing i
described by Eq.~42!, the corresponding Laplace tran
formed two-point correlation function, Eq.~A5!, is

ĉ2~s!5 K 0Uv 1

s2b]v~]v1v!
vU0L

5 K 1U 1

s2b]v~]v1v!
U1L

5
1

s1b
, ~E1!

where we applied the operator properties of]v ,(]v1v)
according to Eqs.~45!. This result shows that the two-poin
correlation function exhibits a single exponential dec
Sincec2(0)5^0uv2u0&51, one obtains

t25b21 . ~E2!

Sincec3(t) vanishes, the next relevant correlation fun
tion is c4(t). Similarly, one obtains for its Laplace transfor

ĉ4~s3 ,s2 ,s1!5
2

~s31b!~s212b!~s11b!
. ~E3!

And sincec4(0)5^0uv4u0&52 the corresponding correla
tion time is

t45A3 1

2
b21 . ~E4!

2. Restricted diffusion in a linear gradient field

In this section we will determine the correlation timestn
of Eq. ~A6! for n52,4 for the one-dimensional restricte
diffusion of spins in a unit box in which they are affected
a linear gradient field. In dimensionless parameters one
tains for the generatorR5b@]x

2#, whereb is the dimension-
less diffusion coefficient. The brackets denote that the ap
cation of the operator]x

2 is restricted to functions with a
vanishing derivative atx561/2 ~reflecting boundary condi
tions!. The frequency operator isV5x and the equilibrium
state eigenfunction isu0&[1.

The determination of correlation timestn requires the cal-
culation of the Laplace transformed quasicumula
ĉn(0, . . . ,0), Eq.~A6!. The definition of these quasicumu
lants according to Eq.~A5! shows the need of recurrent d
termination of terms of the form
06612
n

.

-

b-

li-

s

f 5 lim
s→0

@2~s2R!211s21P0#g, ~E5!

with some functiong, i.e., f fulfills

Rf 5~12P0!g, ~E6!

i.e., with R5b@]x
2# Eq. ~E6! becomes a second order diffe

ential equation. The application of the inverse second or
differential operator leaves, in general two integration co
stants. One may be determined from the reflective symme
boundary conditions; however, a further condition is need
to get the second constant. A spectral decompositionR in Eq.
~E5! showsP0f [0, i.e., we obtain as a further condition

E
21/2

1/2

dx f~x!50. ~E7!

Two-point correlation time.We define

f 1~x!5 lim
s→0

@2~s2R!211s21P0#xu0&5b21~x3/62x/8!,

~E8!

which obviously fulfills the reflecting boundary condition
x561/2 and Eq.~E7!. Hence, the two-point Laplace trans
formed quasicumulant is

ĉ2~0!52^0ux lim
s→0

@2~s2R!211s21P0#xu0&

5E
21/2

1/2

dx x f1~x!5b21
1

120
, ~E9!

and with

c2~0!5^0ux2u0&5E
21/2

1/2

dx x251/12, ~E10!

one obtains

t25
1

10
b21 . ~E11!

Four-point correlation time.Iterative application of Eq.
~E5! defines

f 2~x!5 lim
s→0

@2~s2R!211s21P0#x f1~x!, ~E12!

which, according to Eq.~E6!, fulfills
3-14
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b@]x
2# f 2~x!5~12P0!x f1~x!

5x f1~x!2E
21/2

1/2

dx x f1~x!

5x f1~x!1
1

120
b21 . ~E13!

Insertion of f 1, Eq. ~E8!, and considering the reflectiv
boundary conditions and the condition~E7! yields

f 2~x!5b22S x6

180
2

x4

96
1

x2

240
2

37

161280D . ~E14!

Similarly to the procedure above we could determine a fu
tion f 3(x), but instead we use a different approach wh
exploits the symmetry of eigenfunctions of the operatorR
5b@]x

2#. The Laplace transformed four-point quasicumula
is
e

06612
-

t

~E15!

and with

c4~0,0,0!5^0ux4u0&2^0ux2u0&25
1

180
, ~E16!

we finally have

t45A3 89

443 520
b21. ~E17!
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