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Spin dephasing in the extended strong collision approximation
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For Markovian dynamics of field fluctuations we present here an extended strong collision approximation,
thereby putting our previous strong collision approgehys. Rev. Lett83, 4215(1999]) into a systematic
framework. Our approach provides expressions for the free induction and spin-echo magnetization decays that
may be solved analytically or at least numerically. It is tested for the generic cases of dephasing due to an
Anderson-Weiss process and due to restricted diffusion in a linear field gradient.
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. INTRODUCTION =nAw?2<1, where the correlation time gives the mean
duration of some field realization, afd w?) is the variance
The understanding of spin dephasing is of paramount inef the inhomogeneous field. The relaxation time is then ob-
terest in all fields of nuclear magnetic resonaffd®IR) sci-  tained as IV,= 7(A®?). In the other limiting case, i.e., the
ences. In NMR spectroscopy it determines the line shape, istatic dephasing regime 7(Aw?)Y?>1), Yablonski and
NMR imaging it is—besides longitudinal relaxation—the Haake [2] derived analytical expressions for coherent
major mechanism determining the contrast and contains motdephasing of spins in inhomogeneous fields around magnetic
phological as well as functional information. centers such as cylinders or spheres. Kiselev and H8%se
The processes contributing to spin dephasing are relategktended Yablonski and Haake’s static dephasing approach
to the spin environment. In biological tissues, for exampleby considering diffusion of spins within local linear gradi-
spin dephasing may result from dipole-dipole interaction ofents. However, this approach requires that the diffusion
water proton spins with paramagnetic ions such a&"Fe lengthl during dephasing is within the linear approximation
Another cause is diffusion within inhomogeneous magnetiof the inhomogeneous fields(Xy+ 1)~ w(Xg) + dxw(Xg)!.
fields generated by native or contrast agent induced susceplote that expansion around the limiting cases by perturba-
tibility differences that are related to tissue compositiontion approaches leads to divergences in the other respective
and/or cellular and subcellular compartments. In magnetitimits. Therefore, the intermediate motion regime, i.e., al-
resonance imaging, spin dephasing in external gradient fieldsiost everything between the static dephasing and motional
is exploited to get information about diffusion within bio- narrowing limit, was in most situations accessible by simu-
logical systems. These diffusion sensitive imaging tech4ations only[5].
niques are applied to study tissue anisotropy and restrictions Recently, we used a strong collisid®C) approach to
of diffusion that are given by membranes of cells and subcharacterize spin dephasing in a particular situation: An in-
cellular structures. homogeneous field around regularly arranged parallel cylin-
Essential for dephasing of spins are the field fluctuationslers filled with a paramagnetic substarid¢, a model re-
that induce the phase modulations. It is important to note theflecting the capillary network of the cardiac muscle. The
in biological tissues the relevant processes cover almost thesults agreed well with simulatiois] over the whole dy-
whole range of time scales. For example, the dynamics ofiamic range and with experimental d&€a7].
interactions of water proton spins with paramagnetic macro- The basic idea behind the SC approach is to replace the
molecules such as ferritin is so fast that it can be consideredriginal generator of the Markov process by a simpler one,
to be within the motional narrowing regime. On the otherthe SC generator, which conserves particular features of the
hand, dephasing of spins in magnetic field gradients aroundriginal process. In particular, by an appropriate choice of its
larger vessels is almost coherent, i.e., it is in the statiparameter the SC process reproduces the correlation time of
dephasing regimg2]. Hence, for biological applications it is the field fluctuations induced by the original Markov process.
important to obtain results from theory that are valid over theThere are several advantages of the SC approximation. First,
whole motion regime. However, in most cases this is noit is correct both in the motional narrowing and the static
possible analytically. dephasing limits; thereby also the error in the intermediate
Therefore, most efforts have focused on limiting casesregime is reduced considerably, when compared to perturba-
Themotional narrowing limitis well investigated and a num- tion approaches. And second, it provides a simple expression
ber of analytical results were obtained fof1f. The charac- for the magnetization decay, which may be solved analyti-
teristic of this limit is that the mean phase shift induced by acally or at least numerically.
field realization is much smaller than 1, i.e|d¢| However, the drawback of the SC approach was—up to
now—that it is not part of a systematic approximation to or
an expansion of the original generator. Therefore, it was un-
*Corresponding author. clear how results could be improved beyond the SC approxi-
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mation. The aim of this paper is to extend the SC approaci80° (w-pulse after a timet/2. This pulse transforms the
and provide a framework for a systematic approximation. original magnetization|m(t/2)) to its complex adjoint

In the following section we will present a formal descrip- |m* (t/2))=exd (R—i€)t/2]|0). This procedure cancels the
tion of spin dephasing that will be the basis for our analyticalcoherent spin dephasing after the titn@cho time, i.e. the
analysis. In Sec. Ill we will introduce the extended strongdecay of magnetization atis solely due to incoherent spin
collision (ESQO approximation proper and show how it is dephasing. The time course of the magnetization after the
used to describe free induction and spin-echo decay. In Sepulse, i.e., for times’ >1/2, is determined by
IV we will apply it to two generic cases: spin dephasing
induced by an Anderson-Weiss procé8band by restricted Im(t"))=exd (R+iQ)(t’' —t/2)Jexd (R—i€Q)t/2]|0),
diffusion in a linear field gradient. We will close the paper 4

with a summary and a discussion of our results. . . o .
i.e., the overall spin-echo magnetization at the echo tiise

Il. FORMAL DESCRIPTION OF SPIN DEPHASING Mse(t) = (Olexd (R+iQ)t/2]exd (R—iQ)t/2]0)

We assume that dephasing of transversely polarized =(M(t/2)|m* (t/2)). (5)
nuclear spins exposed to an external field is induced by ran-
domly fluctuating magnetic perturbation fields with fre- Equation(5) relates the overall spin-echo magnetization to
quencyw;, wherei is a discrete or continuous variable. The the magnetization of the free induction decay.
transition dynamics between two distinct statesdj is that

of a stationary continuous time Markov process described by |, THE STRONG COLLISION APPROXIMATION AND

ratesr; for the transitioni —j. The matrixR=(r;;) as th_e_ ITS EXTENSION
generator of the Markov process conserves the probability to
find a spin within one state, i.et;;=—Z2.r; . The eigen- The analytical determination of the free induction decay

values| of R fulfill the condition <0 wherel=0 corre- according to Eqs(3) is restricted to very few cases, e.g., free
sponds to the equilibrium probability distribution. To sim- diffusion in a linear gradient or stochastic fluctuations be-
plify the notation we denote the normalized left and righttween two precession frequencies. The idea of the strong
eigenvectors ofR as(l| and |lI), respectively, with(I’|I)  collision approach and its extension is to replace the genera-
=5 . tor of the Markov proces® by a more simple generat@

The time evolution betweenandt+dt of the transverse that conserves specific features of the original dynamics.
magnetization of spins in the statg(in polar notationm;
=m;,—im;,) results from the linear superposition of the A. Strong collision approximation

transition and the precession dynamics, I.&ym;(1) In many cases the stochastic fluctuations of the perturba-

=2X;r;m;(t)+iw;m(t). The precession within the external .. : . ;

i | g . . ft|on fields occur on a much shorter time scale than spin

field was omitted since it only induces a constant offset Oliephasing. i.e.. the correlation timeof field fluctuations is

the frequency which may be gauged to zero. With the diag- P 9. 1.€., | im0 o

onal frequency, matrif2= (5, ;) one obtains for the mag- much shorter than the relaxation time of the_magnetlzanon.
o ’ e For ergodic Markov processes one can estimate that after

netization|m)=(m;),

some value ofr a spin has visited almost all relevant states
alm() = (R+i)|m(t)), (1) with the equilibrium probability. Qn t_he othe_r han_d, t_here_ is
only little change of the magnetization during this time in-
which is a generalization of the Bloch-Torrey equatf@  terval. Therefore, spin dephasing in this situation can be de-
originally formulated for diffusing spins, i.eR~VZ2 In  scribed equivalently by a process in which the transition rate
most cases it is reasonable to assume that the initial magnBetween two states— | is independent of the initial state.
tization|m(0)) is proportional to the equilibrium probability Consequently, the transition rate for-| is proportional to
distribution |0), e.g., when free diffusion is considered this the equilibrium probability of the final statg,;. Such a
would imply a homogeneous transverse magnetizationdynamics is referred to astrong collision dynamics
Equation(1) then provides the time evolution of the trans-  The generatoD of this process has the form
verse magnetizatioffree induction decayas D= —(id—IIy), ®)

m(t))=exd (R+iQ)t]|0), 2 . I .
Im() H t10) @ wherell,=|0){0| is the projection operator onto the eigen-

where the initial magnetization was normalized to 1. TheSPace generated by the the equilibrium eigenvectét,and

self-consistently.
M (t)=(0|m(t))=(0|exd (R+iQ)t]|0). 3 Since the starting point of the strong collision approxima-

tion is the observation that—in many cases of interest—the
The free induction decay as determined by EE%.and (3) correlation of the stochastic field fluctuations appear on a
results from coherent and incoherent spin dephasing. Thghorter time scale than that of changes of the magnetization,
incoherent contribution is determined from spin-echo experionly the long-time behavior of the field fluctuations is of
ments. In-plane polarized spins are rotated byimportance. This long-time behavior is characterized by the
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correlation time of the two-point autocorrelation function of
the field fluctuationgsee also Appendix A

Ca(t)=(w()w(0))=(0|Q exgR)Q[0),  (7)
which is defined as

- f 420~ Ca(=) _ (0]0expR) ~T1o]0|0)
2 Jo T Ca0)=Ca(*)  (0]02|0)—(0]|€|0)2
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n
"2(0)‘,-21 | woi?

A n
c2(0)72+j§=ll ;| woil?

: (14)

with wg;=(0]Q|i) and c,(0)=(0|Q?0)— w?,. Note that
for n—0 this equation becomes E{.0) again.

However, there are several problems involved with an ap-
proximation based on Eq§l3) and(14). Practically, an ex-

Stochastic field fluctuations determined by the SC procesact determination of the low order eigenvalues and eigenvec-
should have the same correlation time as the original protors is possible only in special cases. Therefore, one has to

cess, leading to the self-consistency condition

T(ZSC)( N)=1,.

©)

deal with the problem that the eigenvalues and eigenvectors
are known either only approximately or not at all. Further-
more, even with eigenvalues and eigenfunctions known, it
turns out that the ESCapproximation may be not applicable

It is easy to determine that the correlation time for the strongyt g in certain situations: If the autocorrelation function of

collision approximation is75°Y(\)=\"1, see Eq.(C2),
leading to

-1

N=1, (10

B. Extended strong collision approximation

The extension of the strong collision approximation is

based on a comparison with the spectral expansion of th

original operator,

R=2 |1, (12)
j=0

wherely=0>1,> .- are the ordered eigenvalues®fand

IT;=1j)(j| is the projection operator onto the eigenspace cor

responding tol;. Since the time evolution operator is

expRt) = Ejioe'itl'[j , itis clear that the low order eigenval-

the field fluctuations is determined fully by the eigenfunc-
tions included inD’, Eqg. (14) is undetermined. In that case
additional self-consistency requirements would be necessary
for a better description of the intermediate time regime.

Nevertheless, the above approach can be readily adapted
to these situations. Equatid&3) can be viewed as an opti-
mized reduced description of the relaxation in various sub-
spaces of the original operatB:. Such a optimized descrip-
tion should also be possible for subspaces that are not
eigenvectors oR. We can, therefore, set

n

Dn=—21 NI — N (id—11). (15)
=

However, now the rates;, j=1, ... n are not eigenvalues
anymore, but have to be determined by additional self-
consistency requirements, see below. Moreover,Iihere

not projectors onto the eigenspace of a particular eigenvalue,

ues determine the long-time behavior, while higher orderg,,; onto the spaces defined by arbitrarily chosen mutually

dominate shorter and shorter time scales. A comparison wit§tho

a rewriting of Eq.(6),
(12

(note thatl ;= 0), shows that in the strong collision approxi-
mation, just the lowest order term of E@L1) is taken into
account explicitly, while the contribution of the higher eigen-

D=|0HO—)\(Id—HO)

values is approximated by the self-consistently determined

parametei\ .

A natural extension, therefore, would be to take into aC'wherepi is some polynomial of degreie the coefficients of

which are chosen in such a way that the orthonormal rela-

count more low order eigenvalues explicitly, thereby increas

gonal functionsf;), j=1, ... n, with (f;|f;)=§; and
(f;10)=0; i.e., the projectors have the forhy=|f;)(f;| and
=11+ E}‘:ll'[j. Naturally, one would try to choose the
functions|f;) close to the eigenfunctiori$), although it is
not required for the extension to work. Another natural func-
tion space, for example, is based on polynomials in the fre-
quency operatof), i.e.,

|fi)=pi(2)|0), (16)

ing the accuracy of the description of the long-time behaviorijong are fulfilled. In the following we will refer to this base

n

Dr’,=21 I IT— A (id—1T). (13)
“

of functions as th&) base.

In analogy to Eq(13) a stochastic process generated by
an operatoD,, in Eq. (15) will be referred to as an extended
strong collision (ESE) approximation of orden. It is evi-

with TI==]_,II;. A stochastic process generated by an op-ent that the ESgCapproximation refers to the strong colli-

eratorD;, in Eq. (13) will be referred to as a simplified ex-
tended strong collision (ESE approximation of orden. As

sion approximation.

We mentioned already that the rates j=1,...nin

before, the contribution of the higher eigenvalues is approxiEqg. (15 have to be determined now by additional self-

mated by the parameter, which is determined again self-
consistently from conditiori9). Here it leads to

consistency requirements. As it was with the SC approxima-
tion, the aim of the ESCapproximation is to approximate
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more closely the correlation of field fluctuations. This isturn out that this is an advantage: the self-consistent deter-
achieved by considering also higher order correlation funcmination of the relaxation parametexsand\ 4, . .. ,\,, ac-
tions cording to Eq.(20) is more balanced than when only E§)
o1 is used, and gives rise to an improved approximation. More-
over, the self-consistency conditiori20) imply that both
Conltm-1, - 1) = < “’( le ti) ot o(t)w(0) processes, the ESC process and the original Markov process,
have the same motional narrowing expansion of the trans-
=(0|Q expRt;,_1)Q- - -expRt;)Q|0). verse relaxation, as it is shown in E@7).

Yy

Following the same arguments as for the strong collision
approximation, the long-time behavior of tl&g, is of inter- ) . . . )
est. In the same way as for the strong collision approxima- N this section we will exploit the simple structure of the
tion this should be characterized by some first order statistigeneratoD, to determine the time course of magnetization.
cal moment, which is obtained by integration of the We W|II_ (_:on5|der both: the fre_e induction dgcay, ie., Fhe su-
correlation function ovet,,_,, . .. t,. However, direct us- P€rposition of coherent and incoherent spin dephasing, and
age ofC,, is hampered by its nonvanishing asymptotic pe-the spin-echo decay, i.e., pure incoherent spin dephasing.
havior: It is easily seen that from the relation
Iimty_m expRt,) =11, follows

C. Transverse spin relaxation in the extended strong collision
approximation

1. Free induction decay

In the extended strong collision approximation the gen-
ImCp(tm_1, - - t1)=Cph(tm_1, - - -t 1) eratorR of the free induction decay in the generalized Bloch-
t,—e Torrey equation(1) is replaced by the generatér, of Eq.
X C (1 t) (19) (15). Instead of solving the propagatdd(t)=exgd(D,
vitvele il +i1Q)t] it is more convenient to solve its Laplace transform
which does not necessarily vanish. In the strong collisiolJ(s) =(s—D,—i) !, which may be expanded as
approximation we avoided this problem by considering the
operator] expRt) — I1,] instead of ex@Rt) in Eqg. (8), i.e., U(s)=Uy(s+N\)+Ug(s+N)AU(s). (22)
we considered only the relaxational part of the stochastic
process. When we perform the same replacement i 1&q.
we obtain modified correlation functiors,(t,,_1, - - - ,t1)
that we will call quasicumulantgsee Appendix A They
vanish asymptotically for alt,. We now require that the
generalized correlation times derived from these quasicumu-

where Uy(s)=(s—iQ) ! is the Laplace transform in the
static dephasing limitd,,= 0), and the operatoA is defined
as

n
lants, —
A-jgo (N—2pI;, (22
* Cr(tm—q, ..t
o= f LSRR IREKLREP) . . .
0 cm(0,....0 where we seth,=0. We will now confine the operators in

Eq. (21) onto the subspace defined by the projection operator
are equal for the exact process and for the extended strorg_ sn oIT . Using the abbreviatio®!:=IIOII for denot-
J: ] . =

;::Ji;sif:ddbeyscnptmn. The relaxation rates are, therefore, defng any operato© confined to that subspace, we obtain

BV, A= T, M=24, .. D2, U(s)=0g(s+ M) +0g(s+0)A"0(s), (23
(20
where we exploited the fact that=IIAII and the idempo-

which replace the single self-consistency condii@n Note  tency of projection operators, i.dl=II2. Equation(23) is
that in many systems the correlation functionsof fundamental importance. It demonstrates that the relation
Cm(tm-1, - - . 1) vanish for odd values afh due to symme-  (21) between the ESC approximation and the static dephas-
try. Therefore, we require the equivalence of relaxation timesng is also valid in the subspad¢0),|f,), ... ,|f,)]. This
in Eq. (20) for even values ofm only. Otherwise one has to  simplifies determination of spin relaxation considerably,
determine the correlation times of the first- 1 nonvanish-  sjnce one only has to determine thev#(1)x(n+1)
ing correlation functions.

It is important to emphasize some properties of the ES
approximation. First of all, it usually does not reduce to the A . .
ESC approximation when eigenfunctions are used for the U(s)=[m-0g(s+M)A"]*0g(s+N). (29
projection operator; i.e., the,, ... ,\,, do not take on the
numerical values of the corresponding eigenvalues, although————
they usually do approximate them. In the light of the prob- 1in case of degeneracy of the eigenvalues the matrix dimension is
lems with the ESCapproximations mentioned above, it will the sum of the dimensions of the eigenspaces plus 1.

dnatriceé of the static dephasing limly andA, i.e.,
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The Laplace transform of the overall magnetization decayime approximation the relaxation times are then the first
My (s) in the extended strong collision approximation haslong-time moments of the decaj/s0], i.e.,
the form

T ==ufl<M>=f:dtM(t),

M (s)=(0]U"(s)[0). (25
For the special case of the strong collision approximation, o
ESG, Egs.(24) and(25) result in To=p_1(Mgp= fo dt Mgg(t). (30
I\7I[O](s)= M1 (26) For a single exponential the mean relaxation time definition
1-Mgq(s+NMN and the definitiong29) give the same results. According to

. . definition (30) the relaxation times of the ESC decays can be
with M¢4(s)=(0|Ug(s+\)|0) as the Laplace transform of related to their Laplace transforms as
the overall magnetization in the static dephasing regime. The

time evolutionM(t) can be obtained from Eq&4) and(25) T3 = M m(0),
either by the numerical inverse Laplace transform by or us-
ing the generalized moment approddhl0], which allows a T,= MSE[n](O)- (31)

multiexponential approximation.

The terml\?l[n](O),which providesT3 , is obtained from Eq.
(25). Applying some rules of Laplace transforms, the term

M e (0) giving T, is obtained from Eq(27) as

2. Spin-echo decay

The spin-echo decay is obtained by inserting the generat
D, into Eq.(5), i.e.,
n

IiMse ()= =AM s (1) +(M(L/2)[A[m* (t/2) T,=A"1423 (1-\/\)0;, (32)
— —AMge (1) +(0|U(t12) AU* (1/2)]0) e
= —MMgg (D) +(0|UT () AU*T(t/2) [0y, “Where

(27) ”
@o= | dt{o[u(1)[0)|?
i.e., the spin-echo decay is expressed as a function of the 0
spin-echo amplitud®& sg, and the projection of the free in- 1 (ie

duction decay onto the subspag®),|f,), ... .|f.)], ie., dz(0]U"(2)|0)(0]U*"(-2)[0) (33

U'(t)|0). This projection of the free induction decay is ob-

tarilned from Eq;(ﬁll) by inverse La-place transfo.rm, € is the mean relaxation time of the absolute squared overall
U™(t)|0)=L"*(U"(s)|0)). The solution of Eq(27) is free induction magnetizatior My (t)|2=[(0[U(t)""|0)|?,
and fori=1,

“2mi )

Msgm(t)=e

t/2
1+2 f d§e2”§<0|UH(E)AU*“(§)|0>}
0

o 0= | “atoumf)(|u o))

3. Time constants of transverse relaxation 1 [ie - N
. . : =5— [ dZ0JU(2)[f;}(f;|U*"(-2)|0) (34)
The free induction and the spin-echo decay are usually 27 ) e
described by the time constarits andT,. However, there is

no unique definition of these parameters. One definition ofiré transit times describing the transient occurrence of the

the relaxation times is nonequilibrium components of the free induction decay
U(t)|f;). Equation(32) relatesT,, which describes the inco-

UTS=—In[M(t)]/t, herent, i.e., irreversible, component of spin dephasing to the
stochastic field dynamicsh(\;) and time constants of the
UT,=—In(Mgp/t. (29)  free induction decay ®;), i.e., Eq.(32) is a dissipation-

fluctuation-coherence relation. Note that the E@S) and
For the ESC decay one has to replat®y M,; andMgegby  (34) directly relate the time constan®; to the Laplace
Msgny - This definition implies a dependence of relaxationtransform of the free induction decay'(s) given by the
times ont, except for single exponential decay. fundamental equatiof23).

Another definition of relaxation times is based on the as- Erom Eq. (32) one can derive asymptotic relations for
sumption that these constants provide the best single expQery fast and slow stochastic field fluctuations. kéte some
nential approximation of magnetization decays, iM(t)  scaling parameter d,, i.e.,\,\;~ ¢, then Eq.(32) reads in
~e T3 Mgg~e VT2, According to the mean relaxation the static dephasing limite(—0)
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To~\"1, (35) portant is theadditionalassumption that the stochastic phase
accumulation of a spigp= [{déw(&) also exhibits a Gauss-
where we exploited tha®;(e) approaches its finite static jan distribution. This latter condition implies that the Green’s
dephasing limit. For very fast fluctuations i.e., in the mo-functionG(w;,w; ,t), i.e., the probability that a spin initially
tional narrowing limit (e—) one exploits that precessing with frequenay; precesses dtwith ;, is also
(]0(s)[0)/(0|U(s)|0)~ €%, as a power expansion demon- a Gaussian function inw;,w; with the condition

strates, i.e., one obtains G(wj,0;,0)=6(w;j—w;). This implies that only nearest
neighbor transitions rates are nonvanishing. Markovian pro-
T~20,. (36) cesses in a continuous variakbewith this property are de-

This implies that the spin-echo relaxation time is almostScrled equivalently by a Fokker-Planck equatjad, i.e.,

identical with the relaxation time of the absolute squareqIhe probability densityp(«w) satisfies

magnetization of the free induction decay, or vice versa that ;4 t)=Rp(w,t)=3,D(w)[d,—F(w)]p(w,t),

the free induction decay is almost irreversible. (40)
The dissipation-fluctuation-coherence relat{88) takes a

very simple form in the strong collision approximation, whenwhereD(w) is a—possiblyw dependent—diffusion coeffi-

we assume that the overall magnetization decay is well apeient andF () is some driving force. Since the equilibrium

proximated by a single exponential, i.M[O](t)%e*t/TZ*_ probability density is a Gaussian function one obtains

equation(1), which determines the dynamics of magnetiza-
To=7,+20¢0~7,+T5. (370  tion as a superposition of precession and stochastic transi-

tions, then reads
From Eqgs.(37) follows that in the motional narrowing

limit T,~T% holds whereas in the static dephasing limit of dmM(w,t)=[,D(w)(d,+Cco)+io]m(w,t). (41)

the strong collision approximation the relatidp~ 7, holds.
g PP =2 The derivation of the Eq940) and (41) is of fundamental

importance, since it states that a Markovian dynamics of a
variablew, which satisfies the Anderson-Weiss conditions, is
A. Anderson-Weiss model equivalent to a diffusion process in this variable within a
harmonic potentiatw?/2 and vice versa. Transformation of
e\fariabIeSw—>cl’2w andt—c~ Y% simplifies Eq.(41) to

IV. APPLICATIONS

The Anderson-Weiss mod€]8] is one of the rare
approaches—besides the ESC approximation—which d
scribes spin dephasing over the whole dynamic range of sto-
chastic field fluctuations. The approach is suitable, for ex-
ample, when dephasing is induced by spin interaction with yhere we continue to denote also the transformed variables
great number of independently fluctuating perturbation fieldgs o andt and 8=c¥?D is the transformed diffusion coeffi-
in the spin environment. Then analytical results are obtainedient. In the following we will restrict consideration to the
for the free induction and the spin-echo magnetization decayase of a constant diffusion coefficiet The left and right
as sided eigenfunctions of the transition operak+ Bd,(4,,

+ w) are the Hermite functions, i.e.,

dm(w,t)=[d,B(w)(d,+w)+tio]m(w,t), (42

t
M(t):ex%_Jo(t_f)CZ(f)df}, (38) |n>~exr(—w2/2)H (w)

” ~H, 43
Msg(t)=exr{—4fo (t/2— &)c,y(£)dé (n| (@) (43)

with eigenvalues

+fot(t—§)02(§)d§}, (39 lh=—ng. (44)

. . , ) ) From the definition of the Hermite functions and the op-
wherec, is the modified two-paint correlation functidsee  grator intertwining relatiofid,, , (d,,+ w)]=1 follow the re-
Appendix A). In this section we will first characterize the ¢ rsive equations

class of Markovian processes which fulfills the conditions of

the Anderson-Weiss model. This leads to a generalized 1

Bloch-Torrey equation according to E@), which is solved. In+1)=- mmn% In=1)=(9,+ w)[n),

Finally we compare the Anderson-Weiss model with its

ESG and ESG approximation. 1

(n+1[=(n|(d,+w), (n—1]=—=(nld,, (45

1. Markovian and Anderson-Weiss dynamics n
The Anderson-Weiss approach is based on a Gaussian diahich also provide the normalization of eigenfunctions. The

tribution of perturbation field frequencies. Even more im-  advantage of the Markovian formulation of the Anderson-
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Weiss model is that it does not only provide global param-where the factoMN generally is some normalization factor
eters but also local ones, e.g., the time course of the magnevith N2=(0|Q?0), i.e., in the case of the Anderson-Weiss
tization with frequencyw. Straightforward application of model it is simplyN=1. Consequently, using some elemen-
Egs.(45) and some operator algebra provides the solution ofary rules of Laplace transforms, one derives the other matrix

Eq. (42 as elements as
mM(w,t)=exd Bd,(d,+w)+iw]|0) (1]0g(s)]0y=(0|Ug(s)|1),
_ _p-1 —2(1 _ a—Bt -1/2
S p e Tlem (110(9)|1) =N 1-5(0|0g(9)|0)]. (52
xexg —U2dw—iB Y(ef—1)}]. (46)

It has to be stressed that the E¢sl) and(52) are generally
Integration overw just gives the free induction decay of the valid for all ESG approximations in thé) base.

overall magnetization The coefficientsh,\; guaranteeing the self-consistency
condition Eqg.(20) are obtained from Eqgs(D4),(E2) and
M(t)=exd — B~ 't+B %(1-e ], @47)  (D7),(E4)
which is just equivalent to the result of E(8), since the N1=B,
two-point correlation function of Eq(42) is c,(t)=e A
[see Eqg.(E1)]. Insertion of this two-point correlation func- N=2p. (53

tion into Eq.(39) provides the spin-echo decay as
Relaxation in the ESgand ESG approximation.The

Mse(t)=M(t/2)? exd B~ %(e A2~ 1)?]. (48)  matrix U(s) and the coefficientd. and \; determine the

. . . _ . Laplace transformed ESC propagatot'(s) in Eq. (24),
Relaxgu?n t|_me§ of thedfreet|ngugt(|)on and spin-echo deca)6vhich itself is the base for all other calculations. It directly
were determined according to Eq80). providesT3 when defined as the first moment, Eg§1), of

2. ESC approximation the free induction decay Eq25). Insertion of U'l(s) into
) . _EQs.(33) and(34) provides according to Eq32) the relax-
The ESC propagator is determined from the propagator iysion time of the spin-echo decay when defined as its first
the static dephasing limiU,=exp(iQt)=[exp(iwt)], and  |ong-time moment Eq(31). Inverse Laplace transformation
the A matrix of Eq.(22), both restricted either to the function of UH(S) gives the ESC propagatai(t), which itself al-
spape[|0>] for the ESG or_[|0>,|f1>] for the ESG ap_p_roxi- lows determination of the spin-echo dec,ay E28).
mation Eq.(24). The special structure of the transition rate The relaxation time == (M) of the Anderson-Weiss

operator of the Anderson-Weiss model implies that the baserocess is well approximated by the ES@nd ESG ap-

?Iggieg fupntzt(lc;)r]a Eq|§1§13)|1|§n|g: n\;llc;a\lei\lllltr; r-,:[th ieflltgzsf?),llgv?/.— proximation over the whole dynamic range of stochastic field
y 1Ly n . 1

ing |f,)=py(Q)=]1) fluctuations(Fig. 1). In the static dephasing regime all curves
vt ' approach lim_ou” 1= \2/m. The successive approximation
f the spin-echo relaxation by the ESC approximation is seen
rom the magnetization decay curv@sg. 2) and the curves
showing the dependence ©f obtained by either definition
[Egs.(29) and (30)] on the diffusion coefficienB as Fig. 3
demonstrates. The latter curves all run parallel in the mo-
tional narrowing regime[ 7,({0/Q?0))¥?=B"1<1] and
exhibit a similar location of the maximum relaxation rate.
Towards the static dephasing regime—0) the rate of the
Anderson-Weiss process declines less than the rates of the
ESC processes.

ESG approximation.The matrix element of the Laplace
transformed propagator in the static dephasing limit require
for the ESG approximation is

(0|Ug(s)|0)= \m/2es 2 erf(s/ \2), (49)

where erfcg) =1—erf(z) is the complementary error func-
tion. The coefficienh, which guarantees the self-consistency
condition Eq.(9), is determined form the Eq8C2) and(E2)

as

N=p. (50
B. Spin dephasing by restricted diffusion
ESC, approximationThe matrix elements of the Laplace in a linear gradient field
transformed propagator in the static dephasing limit required 1. The exact process

for the ESG approximation in theQ) base are that of Eq. ) . L .
(49) and Whereas dephasing of free diffusing spins in a linear gra-

dient field can be treated analytically, only numerical solu-
tions exists for the restricted diffusion cqse?]. On the one

(0[Uo(5)[1) = NLL{0]exp(i2) £2{0) ] hand restricted diffusion in a linear gradient field provides a

=N(—i)L[ 3(0|exp(iQt)|0)] simple model to study principle features of spin dephasing
R by diffusion. On the other hand treatment of this problem is
=Ni[1—s(0|Uy(s)|0)], (51 not only of academic interest as already mentioned in the
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FIG. 1. Relaxation tim& (defined as the first long-time mo- FIG. 2. Spin-echo magnetization decay in the Anderson-Weiss

ment u_,) of the free induction decay in the Anderson-Weiss model (AW) and its ESG and ESG approximations for three dif-
model(AW) and its ESG and ESG approximation as a function of ferent diffusion coefficients3. Note: for the diffusion coefficient
the diffusion coefficienis. close to the motional narrowing regimg+€ 10°5 the Anderson-
Weiss and the ESC curves almost run parallel. Therefore for the

Introduction. We will approximate the free induction and clearness of the figure, only the Anderson-Weiss curve is shown. In
spin-echo decay of the global magnetization for the case dhe intermediate motion regimg=1 the original and the ESC
restricted diffusion by the strong collision approximation curve still run parallel, whereas the Eg@pproximation already
(ESG) and its first extension (ESE. The ESG approxi-  shows a moderate deviation. Towards the static dephasing regime
mation will be performed for both, in thé-polynomial ~ (8=10""% the successive improved approximation of the
base, i.e.,|f1>~9,|0), and in the eigenfunction base, i.e., Anderson-Weiss curve by the ESC curves is evident.
[f1)=11). . .

We assume that the spins diffuse within an interval of sizdhe result gave the spin-echo decay. When the spin-echo re-
L in a linear gradient fieldo(x) =gx. Reflecting boundary laxation time was defined as the first statistical moment of
conditions atx= *L/2 imply thata,m(+L/2t)=0. With D the magnetization decay E(B0) was applied. For determi-
as the diffusion coefficient anit=D[#2] the Bloch-Torrey ~hation of T3 , defined as the first moment of the free induc-
equation(1) has the formd,m(x,t)=(D[2]+igx)m(x,t), tion decAay, Eq(5§) was solved nymerically, and integration
where the bracket] denote that the application of the op- J~3,dxm(x,s)=M(s) gaveT} =M(0)=u_;(M).
eratord? is restricted to functions which fulfill the reflecting

boundary conditions. Transformation of variabbessx/L 2. ESC approximation
andt—tgL results in The determination of the ESGind ESG approximation
o is completely analogous to that for the Anderson-Weiss
am(x,t) = (BLa]+ix)m(x,t), (54 model, except that th@ polynomial and the eigenfunction

base are not identical.
ESG approximation. The equilibrium function for the re-
stricted diffusion within the unit interval is

and vanishing derivatives at the edges of the unit interval
am(*£1/21)=0, (55

with the diffusion coefficient3=D/(gL®). We continue to 0)=1, (57
denote also the transformed variablexamdt to reduce the )

number of symbols. When the initial magnetization is pro-i-€-» Oné obtains

portional to the equilibrium probability, i.em(x,0)=1, the

- i ati - s—il2
Laplace transfornm(x,s) of the local magnetization decay (0]Uq(s)|0) =i In e (58)
satisfies s+il2
(B[8§]+ix)r?1(x,s)=—1. (56)  The self-consistency condition for the strong collision ap-

proximation(9) determines the parameteras[see Eqs(C2)
Equation(54) was solved numerically. Integration of the re- and(E11)]
sult over the unit interval provided the free induction decay
of the overall magnetization, and application of Ef) on N=108. (59
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|£1)=(0]Q?/0) 20| 0)=23x. (60)
064 The matrix elemen{58) and the Eqs(51) and (52) then
directly provide the static dephasing operatdg(s)= (s
—ix) "1 in the[|0),|f,)] base. The parameteks ,\ of the
0.4 ESC approximation are determined from the self-
Ty consistency conditiori20), i.e., with Eqgs.(D4), (E11) and
~ Egs.(D7),(E17), one obtains
0.2 A1=108,
443520
=~ 8900 #
0.0 -
~49.833. (61)
Development in the eigenfunction spatée normalized
@) nonequilibrium eigenfunctions of the restricted diffusion op-
erator are
0.4 - lv)= \/Esir(Vﬂ'X) for v=1,3, ...
=2 cogvmx) forv=24,.... (62)
Since[&i] is a symmetric operator, left and right sided
eigenfunctions are identical. Witff,)=|1) and z=m(1/2
+is) one obtains
- (01Uq(9)|1) = V2[sinh(7s)Ci(£)
|_
+i cosr(ws)Si(g)]lgzz,z* :
(1|Ug(s)|1)= —2 arctari2s) —[i cosh27s)Ci( &)
+sinh(278)Si(£)]152%, . » (63)
0.0 1
— —— ———— where Ci and Si denote the integral cosine and integral sinus
-2 -1 0 1 2 function, respectively. The parametexs, \ in the eigen-
(b) log. B function base are determined similarly as in fhébase(see
10 Appendixes D and Eand one obtains
FIG. 3. Dependence of the spin-echo relaxation tiflpeon the \,~9.893,

diffusion coefficientg for the Anderson-Weiss modéAW) and its
ESG and ESG approximationia) The relaxation time was defined
according to Eq(29) by the echo timd, and(b) as the first long-
time momentu _, of spin-echo magnetization decay according to
Eqg. (30). The Anderson-Weiss curves and the corresponding apy

proximations converge g approaches the motional narrowing re- tion decay, that of the strong collision approximation, and its

gime 7,({0]Q2|0))?= g~ 1<1. When defined by the echo tint@ , . : o
the T, curves of the Anderson-Weiss model and its approximationsf'rSt extension for both bases as a function of the diffusion

all run parallel for the short echo time=t 1). With increasing echo _Coeff'C'ent{B' Al curv_es show the S_ame asym_ptotlc behavior
time (t=3,6) the successive ESC approximation becomes eviden{.n th_e _Stat'c dephasing&—0) and in the motional narrow-
ing limit [ 7,((0|x?|0))*?=1/(20y3) 8~ *<1]. Furthermore,
, ) the better approximation by the Eg€urves compared to the
Insertion of the results of Eq$58) and (59) into Eq. (24 g5 curve in the intermediate motion regime is evident.
determines the L?place transformed propagator in thegESGrpere is no significant difference between the E&@proxi-
approximation(0|U(s)|0) from which T3, T,, and spinecho mation in the eigenfunction and in ti&-polynomial base.
decay curves are obtained. The spin-echo magnetization decay is shown in Fig. 5.
ESC, approximation in the)-polynomial baseThe low-  Especially in the long-time behavior near the static dephas-
est order function besides the equilibrium state in theng regime, the ESC curves either in the eigenfunction
Q) -polynomial base has the form space or in th€) space demonstrate a better approximation

A~41.68. (64)

Relaxation in the ESgand ESG approximationFigure
demonstrates the first long-time moment of the free induc-
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FIG. 4. Relaxation time of the free induction decBy of spins FIG. 5. Spin-echo magnetization decay for restricted diffusion

diffusing within a linear field gradient in the unit interval as a func- within a linear field gradient in the unit interval as obtained from
tion of the diffusion coefficienis. T% is defined as the first long- the Bloch Torrey(BT) equation(54). Three diffusion coefficients
time momentu_, and obtained from the Bloch-TorréT) equa- ~ are considered. The ESC approximations in the different diffusion
tion (54). The ESC approximations are shown. The ESC regimes are demonstrated. The ESfpproximation was obtained
approximation was determined for the eigenfuncitief and theQ for the eigenfunctiorief) and the() base.

base.

Note that the motional narrowing limit as well as the
than the ESgcurve. This is also reflected by the dependencestatic dephasing regime are described correctly by this ap-
of spin-echo relaxation rateTJ on the diffusion coefficient ~Proximation. Consequently, the error in the intermediate mo-
(Figs. 6 and Y. When defined by the echo tiniEq. (29)] the tion regime is already less than it would be by perturbation
ESG and ESG curves run parallel with the curve obtained approaches of a comparable low order. Nevertheless, there is
for restricted diffusion dynamics for short echo times. Forstill room for improvement. Also, one would like to have
longer echo times and decreasing diffusion coefficients th&igher order approximations that can be used to check the
ESG, curve provides a better approximation. Again as for theduality of low order descriptions.
free induction decay there is no significant difference be-
tween ESG approximations in the eigenfunction and that in
the ) base.

0.12
V. SUMMARY AND DISCUSSION
Analytical results on transverse spin relaxation due to sto-
chastic phase modulation exist mainly for limiting cases, 0.08
such as the motional narrowing and the static regime. Pertur '
bation approaches are only valid close to their respective | 77 /// =10\ E;c
limits, and they diverge as one tries to extend them towards. | %" /// N\  _____ ESC, ef base
the opposite motion regime. Particularly the intermediate ooad 77 N e ESC:Qbase

motion regime cannot be described reliably by such a treat-
ment.

We choose a different approach. Our aim was to approxi-
mate the dynamics, assumed to be Markovian, by a more 4404
simple one that conserves specific features of the original , . . . . .
The starting point was the strong collision approximafiéh 25 20 -15 10 05 00 05
that assumes the transition probability between two state: log, B
being independent from the initial state, an approximation 10
that holds when spin dephasing occurs on a time scale sig- F|G. 6. Spin-echo relaxation tinig, as a function of the diffu-
nificantly longer than the stochastic phase modulationssjon coefficient for restricted diffusion in the unit interval and the
Hence, all states perpendicular to the equilibrium state relaxorresponding ESC approximations. The labeling of the curves is as
with the same exponential factor that is determined selfin Fig. 4. The relaxation time was defined by the echo tinae-
consistently by comparison with the field fluctuations. cording to Eq.(29).
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where the factor0|€Q2|0) is due to the normalization of
|f1), (f1/f1)=1. Equation(65) implies that in the motional
narrowing limit, the long-time behavior of spin dephasing
solely depends on the free propagator related relaxation of
the state/f,), i.e., this state remains the only relevant one.
Hence, it is obvious that in the intermediate motion regime
an ESG approximation including the sta}é,) in its genera-

tor is superior to the ESLCapproximation.

Within the function base the propagator of spin dephasing
is directly related to the propagator of spin dephasing in the
absence of stochastic phase modulations. This specific fea-
ture of the ESC dynamics tremendously facilitates the actual
determination of spin dephasing for the following reasons:
(i) in many cases the propagator in the static motion regime
(which is an average phase fagtonay be determined ana-

. —— lytically or at least numerically(ii) the determination of the
25 -2.0 -15 -1.0 -05 0.0 propagator from that in the static motion regime is self-
log, , B cor!tained _vv_ithin_the b_ase, ie., if[ is obtained from a combi-
nation of finite dimensional matrices.

FIG. 7. Spin-echo relaxation tinig, as a function of the diffu- The two lowest order ESC approximations were applied
sion coefficients for restricted diffusion in the unit interval and the to two generic models: spin dephasing in the Anderson-
ESC approximations. Labeling is as in Fig. 4. The relaxation time isVeiss model, i.e., Gaussian frequency distribution and
defined as the first long-time momept_; of the spin-echo decay Gaussian transition dynamics, and dephasing by restricted
Eqg. (30). diffusion in a linear frequency gradient. The reason for this
. . i .. choice was that—besides their generic character—these
A systematic extension of the strong collision ansatz is to

include the relaxation of states of an appropriate finite func—mOdels allow either an analyticdhnderson-Weiss or, at

tion base explicitly. We require that correlation times of Ieagt, a}S|mpIe numerical treatmefibear gradientof mag-
original and approximate dynamics are identical to a certaiff€tization decay. These features are helpful to prove the ESC
order. This self-consistency condition assures that both dy2PProach. For the Anderson-Weiss model we determined the
namics have the same motional narrowing expansion of spiRofresponding Markov generator of the phase modulations,
dephasing. As it was already in the strong collision ansatzVhich—to our knowledge—was done here for the first time.

spin dephasing is asymptotically identical for both dynamics For both generic models the subsequent improvement by
in the limit of the static motion regime. ESG, approximations of dephasing parameters and magneti-

The finite function base of the EQ@pproximation may zation decays could be demonstrated. One of our next aims
be given by the firsh ordered eigenfunctions of the genera- will be the application of the ESC approach to more realistic
tor of the original phase modulations. Obviously, then thescenarios.

ESC generator directly reflects the dynamics of the original In closing, we would like to emphasize that the ESC ap-
generator up to a time scale corresponding toritieeigen-  proach is actually not limited to spin dephasing only. It can
value. For practical applications the ESC approach within ame applied, in principle, in any situation where the time be-
eigenfunction space may be a safe way to approximate spinavior of complicated observables of stochastic processes is
dephasing. However, when the determination of the eigenof interest. In each case, however, an appropriate function

functions is tedious, the application of tlie base[|0),[f1)  pase has to be chosen, corresponding ta(thease for spin
~Q0),|f,)~0Q?0), . ..] may bemore appropriate, at least dephasing.

for the ESG approximation. Within th&) base the determi-

nation of the two- and four-point correlation timésee Ap-

0.10 4

0.08

0.06

0.04 4

----- ESC, ef base
0024 e ESC, @ base

pendix D and the propagator in the static motion regime, ACKNOWLEDGMENTS
Eq. (52), is considerably simplified.
The mechanism by which the E§@pproach in the) We thank P. Grassberger for a critical reading of the

base works becomes evident by the following considerationmanuscript. This work was supported by the Deutsche Fors-
terms of the motional narrowing expansion EB1) may be  chungsgesellschaft: Sonderforschungsbereich 355 “Patho-
interpreted as repetitive interactions of the spin system Witrphysiomgie der Herzinsuffizienz,” SFB 237 “Unordnung
the inhomogeneous fiel® and intermediate evolution with g grosse Fluktuationen,” and Graduiertenkolleg “NMR”
the free propagator exgf;). In the motional narrowing Ha 1232/8-1.

limit, one obtains from Eq(B7),

1fr2=62(0)=f dt(0| Qexp(Rt) 2|0) APPENDIX A: AUTOCORRELATION FUNCTIONS
0 AND QUASICUMULANTS

=(0l02|0 fwdt f.lexp(Rt)|f,), 65 The generah-point autocorrelation function of stochasti-
(010710) 0 (flexeROIf) 69 cally fluctuating fieldsw; is defined as
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Colty 1, . ity APPENDIX B: MOTIONAL NARROWING EXPANSION
The motional narrowing expansion is a perturbation ap-
B E ol o E . o 1o H o proach to determine the overall magnetizatMift)—or its
oo In-1ysg e < Laplace transfornM (s)—in terms of powers of the fluctu-

(A1)  ating fieldsQ. It is based on the assumption that the stochas-
tic fluctuations are more rapid than the precession frequen-

wherep(w; Ein_ll'fi ;-0 b ) ,0) is the probability  cies of the perturbation fieldsnotional narrowing limit. We

to find att=0 the frequency; , att=t; the valuew, , .. ., will present a general relation between the relaxation of the

and att=3"" t the frequencyw] When the stochastic ™Magnetization and the correlation of the field fluctuations

dynamics is determmed by a Markov process, this probabﬂthat contains the motional narrowing limit as a limit case.

ity can be factored into transition probabilities between se-
guential states—i+1 after the intervat;, ; and the initial
(t=0) probability distribution, i.e.,

all magnetization, Eq(3), in Q, i.e.,

. 1
M(S>:<OS—R——Z~90>

P “’in_y;l tis .. 0,0 =(0|(s—R) '+i(s—R) 'Q(s—R) !
n-1 +i%(s—R) 'Q(s—R) 'Q(s—R) '+---]0)
= ; T ,0). A2
iI;Il Ploy =), 5)P(w;,0 (A2 =5 1+572i(0|Q]0)+5 %i%0|Q(s—R) QY+ - -
The transition probabilities after the intervalare the matrix o —1 - A
elements of evolution operator eR{). Since the dynamics =s | I+s Zl OS85 .08 | (B1)
(v—1)X

is assumed to be stationary the initial probabitmwjo,O) is

the equilibrium state probability distribution, i.e., we can re-

write Eq. (A1), where C, are the Laplace transformed n-point correla-

tion functions of Eq. (A3). To avoid singularities at s=0

Cn:<0|ﬂ exp(Rt,,_1)Q- - -expl Rtl)ﬂ|0>, (A3) it is Dbetter to consider Mﬁl(s). When we set
=5 13% i"C (s,s, ...,8), one obtains

where Q= (w;6; ) is the diagonal frequency matrix. A —_—

modification of the correlation functions occurs if one ex- (v=1)x

changes the evolution operator eRp) with the operator *

expRt) —II,, whereIl,=|0){(0| is the projection operator M~Ys)=s| 1+ > (—1)”q”)

onto the equilibrium state space. This modified evolution op- p=1

erator describes the relaxation of observables minus their

equilibrium state values. The modified autocorrelation func- —g— Z i"C,+st 2 irit2C €
tions will be denoted as quasicumulants and they are then vi.vp=1 !
defined as w
4. 4+ (=1)Ps (P71) jraty
= (0| QexpRt,_y) ~ o] - - - [exp(Rty) ~ To]2/0). . DL
(A4
p
The Laplace transform of the correlation function in Eq. X H G+ (B2
(A4) has the form m=1
A 1 1 Rearrangement of terms of equal ordeInprovides
Cn(Sp—1, - - - ,Sl)=<0|ﬂ{5nl—_R— mno} -
L L “s)=s-, iK;, (B3)
X | ——— . N
@ s1—R Slno}mO) -
where the coefficient&; have the form
(A5)
This Laplace transform allows the determination of temporal K= Z CVICV St (—s)tr
moments of the normalized autocorrelation function vt re=i
Cn(th—1, - - . t1)/cy(0, ... ,0) as thegeneralized correlation p
times > IT ¢ + - +(—s)t7ICl.
vyt +v,=j m=1 m
T t=Ca(0,...,0/cy(0, ... 0. (A6) (B4)
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A comparison of this sum with the modified correlation func-  For ESG the generator of the stochastic field fluctuations
tionsc;, Egs.(A4) and(A5), shows that has the formD= —\I1; —\(id—IIy—1II;). We will deter-

mine only the Laplace transforms of the two- and four-point

R correlation functions, since the three-point correlation func-

K;=cj(s,....s), (B5)  tions vanishes in the models we consider. According to Eq.

- Dx (A5) the determination of the correlation functions requires
the operator
i.e., one obtains
1 1 1 1
. ﬁ EHO_S‘f‘—)\lHl_'— m(ld II,-11,). (D1
A 71 _ R
M= (s)=s 12:1 Hej(s,8, 9. (B6) Assuming that the average frequency vanishes, (8.,
(G-1x =(0|0|0)=0, which can always be achieved by normaliza-
tion, |f;)~€|0). Hence, the projectofl,=|f,){f,| takes
Equation(B6) expands the relaxation of the magnetiza—the form
tion in terms of correlation functions to an arbitrary order. Q/0)(0]Q
The long-time behavior ofM(t) is determined by the m=—_. (D2)
Laplace transform in the limit of smad, i.e., in this range (0]9?0)
the relation ] ) )
For the Laplace transformed two-point correlation function
R < one obtains then
|\/|—1(0)=—21 ilc;(0,0,....,0 (B7)
i=

6(2E801)(S)=()\1+s)71<0|92|0>, (D3)

is valid; see also EqQUA6). The series in Eq(B7) contains
terms of magnitude=(0|Q”|0)/1”, wherel denotes nonvan-
ishing eigenvalues dR. The latter determine the fluctuation

i.e., the two-point correlation function exhibits a single ex-
ponential decay with relaxation rate

frequency. In the motional narrowing limit these fluctuations (ESC)_, -1 (D4)
are much higher than the precessing frequencies 2 S0
(0]Q*|0)/1"<1, i.e., after normalization of the average Pe- The four-point correlation function is
turbation field(0| ©|0) to zero, i.e.c;=0, M(t) is given a P
single exponential decay with the well known result for the - (Es0) 1
i - — 2 =
transverse relaxation rate asT1# c,(0)= 7,(0|Q2|0). c, *“(S3,52,51) (St D) (5 F N
APPENDIX C: QUASICUMULANTS IN THE STRONG 1 1 |(0]@%0)
COLLISION APPROXIMATION s:TA1 S +N) (0]Q2|0)
In the strong collision (ESg} approximation the quasicu- 1
mulants take a very simple form. Insertion of the generator +
D=—\(id—1Ily) into Eq. (A5) results in (83 M) (S2 M) (SpFAy)

g X ((0]Q40)—(0]Q?0)?).  (D5)
aﬁES%)(Snfln ceS1)= Il;[l siT)\Cn,l(O, ...,0,
(CY

The four-point correlation time is then determined as

| . . . T D= [0/ (0))1
i.e., the quasicumulant is a product of single exponential

functionse ™ and the generalized correlation times, Eq. 1/1 1 <O|Q3|O)2
(A6), are all identical, namely, = ( ) > 2 PP
(0[€2%0)((0[€2*/0)—(0|Q27[0)*)

A A

)\2
SO -1 !
7S9=\"1, (€2 L
+— . (D6)
APPENDIX D: QUASICUMULANTS IN THE EXTENDED AIA

STRONG COLLISION APPROXIMATION ]
In the case of the Anderson-Weiss model and for the re-

We restrict ourselves here to the ESfpproximation and  stricted diffusion linear gradient, one h&gQ|0)=0, i.e.,
determine the correlation functions and generalized relaxgq. (D6) simplifies to
ation times for the()-polynomial base only in order to show

the principle. Extensions to higher order approximations and 3/ 1
to other function bases are straightforward, although they rﬁESCl): N (D7)
may be more tedious to calculate. AN
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APPENDIX E: RELAXATION TIMES OF CORRELATION f=Ilim[—(s— R)‘1+ s~ 11]0]9' (E5)
FUNCTIONS IN THE MODELS s—0

In this final appendix we will determine the generalized
relaxation times of stochastic field fluctuations up to thewith some functiorg, i.e., f fulfills
fourth order for the generic models we discuss in the main
text. Rf=(1-1ly)g, (E6)

1. Diffusion in a harmonic potential

i.e., with R:,B[ai] Eq. (E6) becomes a second order differ-
ential equation. The application of the inverse second order
differential operator leaves, in general two integration con-
stants. One may be determined from the reflective symmetric
boundary conditions; however, a further condition is needed

When field fluctuations result from diffusion in a har-
monic potential according to Eq40) and spin dephasing is
described by Eq.42), the corresponding Laplace trans-
formed two-point correlation function, E¢A5), is

. to get the second constant. A spectral decomposRiamEq.
cz(s)=<0 wmw 0> (E5) showsll,f=0, i.e., we obtain as a further condition
_{1 1 1 112
- S_[Baw(aw+w) J\,]_/zdx f(X)=0 (E?)
1
- s+ B’ (ED) Two-point correlation timeWe define

where we applied the operator properties &f, (dw + w) T R | P
according to Eqs(45). This result shows that the two-point fl(X)—l[T:)[ (s=R)™ 457 Ho]X|0) = B~(x°/6=X/8),
correlation function exhibits a single exponential decay. (E8)
Sincec,(0)=(0|w?|0)=1, one obtains

=81, (E2) which obviously fulfills the reflecting boundary condition at
x=*1/2 and Eq.[E7). Hence, the two-point Laplace trans-
Sincec,(t) vanishes, the next relevant correlation func-formed quasicumulant is
tion is c4(t). Similarly, one obtains for its Laplace transform

A 2 C,(0)=—(0|xlim[ — (s—R) "*+s~1I,]x|0)
= HO
L [y S
12 1
And sincec,(0)=(0|w?0)=2 the corresponding correla- = dx x fy(x)=B8" 57, (E9)
—1/2 120
tion time is
3/l and with

1/2
— 2 — —
2. Restricted diffusion in a linear gradient field C2(0)=(0|x*|0)= J', 1,2dx ¥=1/12, (E10
In this section we will determine the correlation timgs
of Eq. (A6) for n=2,4 for the one-dimensional restricted gne obtains
diffusion of spins in a unit box in which they are affected by
a linear gradient field. In dimensionless parameters one ob-
tains for the generathzﬁ[ai], whereg is the dimension-
less diffusion coefficient. The brackets denote that the appli-
cation of the operatop? is restricted to functions with a
vanishing derivative at= +1/2 (reflecting boundary condi-  Fqyur-point correlation time.lterative application of Eq.
tions). The frequency operator ©=x and the equilibrium (g5) gefines
state eigenfunction if0)=1.
The determination of correlation timeg requires the cal-
culation of the Laplace transformed quasicumulants fo(x)=lim[—(s=R)"*+s 'M]xfy(x), (E12
¢,(0, . ..,0), Eq.(A6). The definition of these quasicumu- =0
lants according to EqA5) shows the need of recurrent de-
termination of terms of the form which, according to Eq(E®), fulfills

1 -1
m=158 1 (E11)
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BLIIf (%) = (1~ g)xf1(x) e
vz 4(0,0,0)=— oth[— S N
:xfl(x)—ﬁl/zdx xf1(X) 4, 30 s3—R 55 0
1 X i [ + lﬂ
— - im | — — X
xfi(x)+ 120,8 . (E13 it 5—R 5y 0
1
Xlim[— +—H0x0>
sp—ol S1TRSy
Insertion of f;, Eq. (E8), and considering the reflective
boundary conditions and the conditi ields 12
Y 7)Yy [ avnoneo
_ -3 89
(X Xt X 37 =B 79833 600° (E1H
R00=8" 150" 96 " 240 161280° E
and with
1
€4(0,0,0=(0|x*0)—(0|x?|0)?=-—,  (E16)

Similarly to the procedure above we could determine a func- 180
tion f3(x), but instead we use a different approach whichye finally have
exploits the symmetry of eigenfunctions of the operd®or
= B[2]. The Laplace transformed four-point quasicumulant 3.8
is ™= Na3528 (E1D
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